




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、二階常系數(shù)齊次線性微分方程二階常系數(shù)齊次線性微分方程second order homogeneour linear differential equation with constant coefficient二階變系數(shù)齊次線性微分方程二階變系數(shù)齊次線性微分方程 second order homogeneous linear differential equation with variable coefficient 特征方程特征方程 characteristic equation 常系數(shù) 機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第七節(jié)齊次線性微分方程 基本思路: 求解常系數(shù)線性齊次微分方程 求
2、特征方程(代數(shù)方程)之根轉(zhuǎn)化 第七章 一、定義)(1)1(1)(xfyPyPyPynnnn n階常系數(shù)線性微分方程的標(biāo)準(zhǔn)形式階常系數(shù)線性微分方程的標(biāo)準(zhǔn)形式0 qyypy二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式)(xfqyypy 二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式二、二階常系數(shù)齊次線性方程解法-特征方程法特征方程法,rxey 設(shè)設(shè)將其代入上方程將其代入上方程, 得得0)(2 rxeqprr, 0 rxe故有故有02 qprr特征方程特征方程,2422,1qppr 特征根特征根0 qyypy 有兩個(gè)不相等的實(shí)根有兩個(gè)不相等的實(shí)根,2421q
3、ppr ,2422qppr ,11xrey ,22xrey 兩個(gè)線性無(wú)關(guān)的特解兩個(gè)線性無(wú)關(guān)的特解得齊次方程的通解為得齊次方程的通解為;2121xrxreCeCy )0( 特征根為特征根為 有兩個(gè)相等的實(shí)根有兩個(gè)相等的實(shí)根,11xrey ,221prr )0( 一特解為一特解為得齊次方程的通解為得齊次方程的通解為;)(121xrexCCy 代入原方程并化簡(jiǎn),代入原方程并化簡(jiǎn),將將222yyy , 0)()2(1211 uqprrupru, 0 u知知,)(xxu 取取,12xrxey 則則,)(12xrexuy 設(shè)設(shè)另另一一特特解解為為特征根為特征根為 有一對(duì)共軛復(fù)根有一對(duì)共軛復(fù)根,1 jr ,
4、2 jr ,)(1xjey ,)(2xjey )0( 重新組合重新組合)(21211yyy ,cos xex )(21212yyjy ,sin xex 得齊次方程的通解為得齊次方程的通解為).sincos(21xCxCeyx 特征根為特征根為定義定義 由常系數(shù)齊次線性方程的特征方程的根由常系數(shù)齊次線性方程的特征方程的根確定其通解的方法稱為確定其通解的方法稱為特征方程法特征方程法. .044的通解的通解求方程求方程 yyy解解特征方程為特征方程為,0442 rr解得解得,221 rr故所求通解為故所求通解為.)(221xexCCy 例例1 1.052的通解的通解求方程求方程 yyy解解特征方程為
5、特征方程為,0522 rr解得解得,2121jr ,故所求通解為故所求通解為).2sin2cos(21xCxCeyx 例例2 2三、n階常系數(shù)齊次線性方程解法01)1(1)( yPyPyPynnnn特征方程為特征方程為0111 nnnnPrPrPr特征方程的根特征方程的根通解中的對(duì)應(yīng)項(xiàng)通解中的對(duì)應(yīng)項(xiàng)rk重重根根若若是是rxkkexCxCC)(1110 jk復(fù)復(fù)根根重重共共軛軛若若是是xkkkkexxDxDDxxCxCC sin)(cos)(11101110注意注意n次代數(shù)方程有次代數(shù)方程有n個(gè)根個(gè)根, 而特征方程的每一個(gè)而特征方程的每一個(gè)根都對(duì)應(yīng)著通解中的一項(xiàng)根都對(duì)應(yīng)著通解中的一項(xiàng), 且每一項(xiàng)
6、各一個(gè)且每一項(xiàng)各一個(gè)任意常數(shù)任意常數(shù).nnyCyCyCy 2211特征根為特征根為, 154321jrrjrrr 故所求通解為故所求通解為.sin)(cos)(54321xxCCxxCCeCyx 解解, 01222345 rrrrr特征方程為特征方程為, 0)1)(1(22 rr.022)3()4()5(的通解的通解求方程求方程 yyyyyy例例3 3四、小結(jié)二階常系數(shù)齊次微分方程求通解的一般步驟二階常系數(shù)齊次微分方程求通解的一般步驟:(1)寫出相應(yīng)的特征方程)寫出相應(yīng)的特征方程;(2)求出特征根)求出特征根;(3)根據(jù)特征根的不同情況)根據(jù)特征根的不同情況,得到相應(yīng)的通解得到相應(yīng)的通解. (見(jiàn)下表見(jiàn)下表)02 qprr0 qyypy 特征根的情況特征根的情況 通解的表達(dá)式通解的表達(dá)式實(shí)根實(shí)根21rr 實(shí)根實(shí)根21rr 復(fù)根復(fù)根 ir 2, 1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCeyx 作業(yè)作業(yè) P340 1 ; 2; 思考題思考題求微分方程求微分方程 的通解的通解. yyyyyln
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政法學(xué)對(duì)策研究與試題及答案
- 廠區(qū)保安火災(zāi)應(yīng)急預(yù)案(3篇)
- 醫(yī)院氧氣泄漏火災(zāi)應(yīng)急預(yù)案(3篇)
- 維持經(jīng)濟(jì)增長(zhǎng)的政策措施試題及答案
- 高考數(shù)學(xué)有趣題型與答案探討
- 行政法學(xué)高效復(fù)習(xí)策略與試題
- 電梯停電火災(zāi)應(yīng)急預(yù)案(3篇)
- 軟件可維護(hù)性的重要性分析試題及答案
- 治療室火災(zāi)應(yīng)急預(yù)案(3篇)
- 小學(xué)夜間火災(zāi)應(yīng)急預(yù)案(3篇)
- (二模)保定市2025年高三第二次模擬考試地理試卷(含答案解析)
- 足浴店員工涉黃合同協(xié)議
- 2023年1月浙江高考英語(yǔ)試題(含答案解析)
- 應(yīng)用文寫作-介紹智能校園圖書館的英文發(fā)言稿+講義-2025屆吉林省長(zhǎng)春市高三下學(xué)期質(zhì)量監(jiān)測(cè)(三)英語(yǔ)試題
- 2025-2030中國(guó)葉黃素行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 非全日制勞動(dòng)合同協(xié)議
- 企業(yè)交通安全宣傳教學(xué)課件
- 2025-2030再生膠產(chǎn)業(yè)規(guī)劃專項(xiàng)研究報(bào)告
- 2025年人教版小學(xué)六年級(jí)下冊(cè)趣味數(shù)學(xué)競(jìng)賽試卷(附參考答案)
- 2025年碳匯 實(shí)施方案
- 完整的離婚協(xié)議書打印電子版(2025年版)
評(píng)論
0/150
提交評(píng)論