版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 巴甫洛維奇巴甫洛維奇契訶夫是契訶夫是19世紀(jì)末世紀(jì)末俄國現(xiàn)實主義代表作家之一,是杰出俄國現(xiàn)實主義代表作家之一,是杰出的短篇小說家與戲劇家他在上大學(xué)的短篇小說家與戲劇家他在上大學(xué)期間,就為當(dāng)時的幽默雜志撰寫短篇期間,就為當(dāng)時的幽默雜志撰寫短篇小說契訶夫的作品對俄國文學(xué)和戲小說契訶夫的作品對俄國文學(xué)和戲劇的發(fā)展有重大影響他對數(shù)學(xué)也很劇的發(fā)展有重大影響他對數(shù)學(xué)也很感興趣,在短篇小說感興趣,在短篇小說家庭教師家庭教師中中就有下面一道趣題:就有下面一道趣題: 某商人花某商人花540盧布買了黑布料和藍(lán)布料盧布買了黑布料和藍(lán)布料共共138俄尺,已知藍(lán)布料每俄尺俄尺,已知藍(lán)布料每俄尺5盧布,黑布盧布,黑布料
2、每俄尺料每俄尺3盧布請問商人買來黑布料、藍(lán)盧布請問商人買來黑布料、藍(lán)布料各有幾俄尺?布料各有幾俄尺? 如何解決這個問題呢?如何解決這個問題呢?(盧布和俄尺分別是俄羅斯的貨幣單(盧布和俄尺分別是俄羅斯的貨幣單位和長度單位)位和長度單位) 解:設(shè)買了藍(lán)布料解:設(shè)買了藍(lán)布料x俄尺,那么買黑布俄尺,那么買黑布料(料(138x)俄尺;因而買藍(lán)布料花了)俄尺;因而買藍(lán)布料花了3x盧盧布,買黑布料花了布,買黑布料花了5(138x)盧布,根據(jù))盧布,根據(jù)買兩種布料共用買兩種布料共用540盧布,列得方程盧布,列得方程3x5(138x) = 540怎樣使這個方程轉(zhuǎn)化為x = a的形式? 1掌握解一元一次方程中掌握
3、解一元一次方程中“去分母去分母”、“去括號去括號”的方法,并能解此類型的方程的方法,并能解此類型的方程 2了解一元一次方程解法的一般步驟了解一元一次方程解法的一般步驟化簡下列各式:化簡下列各式:(1)3a2b(6a4b)(2)()(3a2b) 3(ab)(3)5a4b(3ab)9a2bb2a3b想一想去括想一想去括號時符號變號時符號變化規(guī)律化規(guī)律去括號法則去括號法則 1括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同2括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相反解這個方程:解這個方程:3x5(138x) = 5403x6905x5403x5x540690
4、2x150 x75解:解:去括號去括號移項移項合并同類項合并同類項系數(shù)化為系數(shù)化為1去括號法則去括號法則 由上可知,顧客由上可知,顧客買藍(lán)布料買藍(lán)布料75俄尺所俄尺所以買黑布料:以買黑布料:1387563(俄尺)(俄尺) 問題:王大伯承包了問題:王大伯承包了25畝土地,今年春季畝土地,今年春季改種茄子和西紅柿兩種大棚蔬菜,用去了改種茄子和西紅柿兩種大棚蔬菜,用去了44 000元,其中種茄子每畝用了元,其中種茄子每畝用了1700元,種西紅元,種西紅柿每畝用了柿每畝用了1800元問兩蔬菜各種了多少畝?元問兩蔬菜各種了多少畝? 分析:設(shè)王大伯共種了分析:設(shè)王大伯共種了x畝茄子,則他種畝茄子,則他種西
5、紅柿西紅柿_畝種茄子每畝用了畝種茄子每畝用了1700元那么種茄子一共用去了元那么種茄子一共用去了_元;元; 種種西紅柿每畝用了西紅柿每畝用了1800元,則他種西紅柿共用元,則他種西紅柿共用去了去了_元根據(jù)王大伯種這兩元根據(jù)王大伯種這兩種蔬菜共用去了種蔬菜共用去了44000元,可列方程元,可列方程(25x)1700 x1800 (25x)1700 x 1800 (25x)44 000怎樣解這怎樣解這個方程?個方程?1 700 x 1 800 (25x)44 000 x10100 x1 0001 700 x45 0001 800 x44 0001 700 x1 800 x44 00045 000去
6、括號去括號移項移項合并同類項合并同類項系數(shù)化為系數(shù)化為1去括號是解去括號是解方程時常用方程時常用的變形的變形解:解:由上可知,種茄子由上可知,種茄子10畝畝所以種西紅柿:所以種西紅柿:251015(畝)(畝)答:種茄子答:種茄子10畝,種西紅柿畝,種西紅柿15畝畝 例例1 解方程解方程 (1 1)x x5 5(2x2x1 1)=3=32 2(x x5)解:去括號,得解:去括號,得x10 x532x10移項,得移項,得x10 x2x3105合并同類項,得合并同類項,得9x18系數(shù)化為系數(shù)化為1,得得x2(2)4x3(15x) 6x7(11x)解:去括號,得解:去括號,得4x453x6x777x移
7、項,得移項,得4x3x6x7x7745合并同類項,得合并同類項,得6x32系數(shù)化成系數(shù)化成1,得,得163x 討論:解一元一次方程的討論:解一元一次方程的步驟是什么步驟是什么?(1)去括號(2)移項(3)合并同類項(4)系數(shù)化成(1) 3x5(x3)=9(x+4)( ( ) )214 6x5x6x132(2) 6x 2(3x5) 10(3) 2(x5)=3(x5) 6 解下列方程解下列方程x105x311x5x14練一練練一練 1某校準(zhǔn)備將某校準(zhǔn)備將2000元獎金全部發(fā)給元獎金全部發(fā)給20名三好名三好生,其中市級三好生每人得獎金生,其中市級三好生每人得獎金200元,校級三元,校級三好生每人得獎
8、金好生每人得獎金50元,請問全校市級三好生、校元,請問全校市級三好生、校級三好生各有多少人?級三好生各有多少人?解:高全校市級三好生解:高全校市級三好生x人,列方程人,列方程200 x50(20 x) 2000解,得解,得x5所以校級三好生:所以校級三好生: 20 x15(人)(人) 答:市級三好生答:市級三好生5人;校級三好生人;校級三好生15人人練一練練一練 2一個籠中裝有雞、兔若干只,從上面一個籠中裝有雞、兔若干只,從上面看,共有看,共有21個頭;從下面看,共有個頭;從下面看,共有66只腳,問只腳,問雞、兔各有多少只雞、兔各有多少只解:設(shè)雞解:設(shè)雞x只,列方程只,列方程2x4(21-x)
9、 66解,得解,得 x9所以兔的個數(shù)為:所以兔的個數(shù)為:21x12(只)(只)答:籠中有雞答:籠中有雞9只,兔只,兔12只只 (3)李白街上走,提壺去買酒,遇)李白街上走,提壺去買酒,遇店加一倍,見花喝一斗店加一倍,見花喝一斗;三遇店和花,喝三遇店和花,喝光壺中酒,試問酒壺中原有多少酒光壺中酒,試問酒壺中原有多少酒?斗:斗:古代的一個計量單位;古代的一個計量單位; 1斗斗 = 10升升 解:設(shè):設(shè)酒壺中原有解:設(shè):設(shè)酒壺中原有x斗酒斗酒第一次遇店:第一次遇店:第一次遇花:第一次遇花:第二次遇店:第二次遇店:第二次遇花:第二次遇花:第三次遇店:第三次遇店:第三次遇花:第三次遇花:2x2x12x1
10、2(2x1) 4x24x2 14x32(4x3) 8x68x618x7列方程,得列方程,得8x70解,得解,得x0.875答:酒壺中原有答:酒壺中原有0.875斗酒斗酒 例例2:一艘輪船在兩個碼頭之間航行,順:一艘輪船在兩個碼頭之間航行,順?biāo)叫行枰叫行枰?小時,逆水行駛需要小時,逆水行駛需要5小時,水小時,水流的速度是流的速度是2千米千米/時,求輪船在靜水中的行時,求輪船在靜水中的行駛速度駛速度分析:已知兩個碼頭之間的距離相等分析:已知兩個碼頭之間的距離相等所以:順流速度所以:順流速度順流時間逆流速度順流時間逆流速度逆流時間逆流時間去括號,得去括號,得4x85x10移項及合并同類項,得移
11、項及合并同類項,得x18系數(shù)化為系數(shù)化為1,得,得x18答:船在靜水中的行駛速度為答:船在靜水中的行駛速度為18千米千米/時時解:設(shè)輪船在靜水中的行駛速度為解:設(shè)輪船在靜水中的行駛速度為x千米千米/時,時,則順流速度為(則順流速度為(x 2)千米)千米/時,逆流速時,逆流速度為(度為(x2 )千米)千米/時時可列方程可列方程4 (x 2)5 (x2 ) 順流時的速度=靜水中的速度+水流的速度 逆流時的速度=靜水中的速度-水流的速度 (1) 一艘輪船從一碼頭逆流而上,再順流一艘輪船從一碼頭逆流而上,再順流而下如果輪船在靜水中的速度為每小時而下如果輪船在靜水中的速度為每小時15千千米,水流速度為每
12、小時米,水流速度為每小時3千米,那么這艘輪船千米,那么這艘輪船最多開出多遠(yuǎn)然后返回才能保證在最多開出多遠(yuǎn)然后返回才能保證在 75小時內(nèi)小時內(nèi)回到原碼頭?回到原碼頭? 解:設(shè)這艘輪船開出解:設(shè)這艘輪船開出x小時后多返回,才能小時后多返回,才能保證在保證在 7.5小時內(nèi)回到原碼頭小時內(nèi)回到原碼頭 列方程列方程(153)x(153) (7.5x)解,得:解,得: x4.5 即輪船開出后:即輪船開出后: (153)x54(千米)(千米)后,返回才能保證在后,返回才能保證在 7.5小時內(nèi)回到原碼頭小時內(nèi)回到原碼頭 練一練練一練 (2) 甲、乙兩人在一條長甲、乙兩人在一條長400米的環(huán)形跑米的環(huán)形跑道上跑
13、步甲的速度是道上跑步甲的速度是360米米/分,乙的速度是分,乙的速度是240米米/分分 1. 兩人同時同地同向跑,多長時間兩人第兩人同時同地同向跑,多長時間兩人第一次相遇,此時兩人一共跑了幾圈?一次相遇,此時兩人一共跑了幾圈? 2. 兩人同時同地反向跑,幾秒后兩人第一兩人同時同地反向跑,幾秒后兩人第一次相遇?次相遇? 3. 兩人同時同向跑,甲先跑兩人同時同向跑,甲先跑30秒,問還要秒,問還要多長時間兩人第一次相遇?多長時間兩人第一次相遇? 4. 兩人同時同向跑,乙先跑兩人同時同向跑,乙先跑30秒,問還要秒,問還要多長時間兩人第一次相遇?多長時間兩人第一次相遇? 54011秒秒26秒秒 (3)一
14、小船由)一小船由A港到港到B港順流行駛航行港順流行駛航行需需6h,由,由B港到港到A港逆流航行需要港逆流航行需要8h,一天,一天,小船從早晨小船從早晨6時由時由A港出發(fā)順流到達(dá)港出發(fā)順流到達(dá)B港時,港時,發(fā)現(xiàn)救生圈在途中掉落了水中,立即返發(fā)現(xiàn)救生圈在途中掉落了水中,立即返回回,1h后找到救生圈后找到救生圈 1. 若小船按水流速度由若小船按水流速度由A港漂流到港漂流到B港港,需要多長時間需要多長時間? 2. 救生圈是在什么時候掉入水中的救生圈是在什么時候掉入水中的? 48小時小時11時時 例例3:(1)某工廠計劃用某工廠計劃用26小時生產(chǎn)小時生產(chǎn)一批零件,后因每小時多生產(chǎn)一批零件,后因每小時多生
15、產(chǎn)5件,用件,用24小小時不但完成了任務(wù),而且比原計劃多生產(chǎn)時不但完成了任務(wù),而且比原計劃多生產(chǎn)了了60件,問原計劃生產(chǎn)多少件零件?件,問原計劃生產(chǎn)多少件零件? 分析:原計劃生產(chǎn)分析:原計劃生產(chǎn)x件零件,所以件零件,所以計劃每小時生產(chǎn)零件數(shù)計劃每小時生產(chǎn)零件數(shù)26實際每小時生產(chǎn)實際每小時生產(chǎn)零件數(shù)零件數(shù)2460解:設(shè)原計劃每小時生產(chǎn)解:設(shè)原計劃每小時生產(chǎn)x件零件,列方程件零件,列方程 24x(x+5) 6026x 去括號,得去括號,得 24x+120-6026x 移項及合并同類項,得移項及合并同類項,得 2x60 系數(shù)化成系數(shù)化成1,得得 x30 所以原計劃所以原計劃2630780(件)(件)
16、答:原計劃生產(chǎn)答:原計劃生產(chǎn)780件零件件零件 (2)一個服裝車間,共有)一個服裝車間,共有90人,每人每人,每人每小時加工小時加工1件衣服或件衣服或2條褲子,問怎樣安排工條褲子,問怎樣安排工作才能使衣服和褲子正好配套?(一件衣服作才能使衣服和褲子正好配套?(一件衣服配一條褲子)配一條褲子) 分析:為了使分析:為了使每天生產(chǎn)的衣服和每天生產(chǎn)的衣服和褲子正好配套,應(yīng)褲子正好配套,應(yīng)使生產(chǎn)的衣服和褲使生產(chǎn)的衣服和褲子數(shù)量相等子數(shù)量相等 解:設(shè)做衣服人數(shù)為解:設(shè)做衣服人數(shù)為x人,則做褲子的人數(shù)人,則做褲子的人數(shù)為(為(90 x)人列方程)人列方程x=2(90 x)去括號,得去括號,得x1802x 移
17、項及合并同類項,得移項及合并同類項,得3x180系數(shù)化為系數(shù)化為1,得得x60所以做褲子的人數(shù)為:所以做褲子的人數(shù)為: 60 x20(人)(人)答:做衣服人的人數(shù)為答:做衣服人的人數(shù)為40人,做褲子的人人,做褲子的人為為20人人 (1)某車間每天能生產(chǎn)甲種零件)某車間每天能生產(chǎn)甲種零件100個,或個,或者乙種零件者乙種零件100個甲、乙兩種零件分別取個甲、乙兩種零件分別取3個、個、2個才能配成一套要在個才能配成一套要在30天內(nèi)生產(chǎn)最多的成套天內(nèi)生產(chǎn)最多的成套產(chǎn)品,問怎樣安排生產(chǎn)甲、乙兩種零件的天數(shù)?產(chǎn)品,問怎樣安排生產(chǎn)甲、乙兩種零件的天數(shù)? 解:設(shè)生產(chǎn)甲種零件解:設(shè)生產(chǎn)甲種零件x天,列方程:天
18、,列方程:2100 x3100(30 x)解,得:解,得:x18則生產(chǎn)乙種零件的天數(shù)為:則生產(chǎn)乙種零件的天數(shù)為:30 x12(天)(天) 答:應(yīng)安排生產(chǎn)甲種零件答:應(yīng)安排生產(chǎn)甲種零件18天,乙種零天,乙種零件件12天天練一練練一練 (2)某水利工地派)某水利工地派40人去挖土和運(yùn)土,如人去挖土和運(yùn)土,如果每人每天平均挖土果每人每天平均挖土5方或運(yùn)土方或運(yùn)土3方,那么應(yīng)怎方,那么應(yīng)怎樣安排人員,正好能使挖出的土及時運(yùn)走?樣安排人員,正好能使挖出的土及時運(yùn)走? 解:設(shè)每天派解:設(shè)每天派x人挖土,列方程人挖土,列方程 5x3(40 x) 解,得解,得 x15 所以每天運(yùn)土人數(shù)為所以每天運(yùn)土人數(shù)為:
19、40 x25(人)(人) 答:每天派答:每天派15人挖土,人挖土,25人運(yùn)土,正好人運(yùn)土,正好能使挖出的土及時運(yùn)走能使挖出的土及時運(yùn)走 (3)用白鐵皮做罐頭盒,每張鐵片可制盒)用白鐵皮做罐頭盒,每張鐵片可制盒身身16個或制盒底個或制盒底45個一個盒身與兩個盒底配成一個一個盒身與兩個盒底配成一套罐頭盒現(xiàn)有套罐頭盒現(xiàn)有100張白鐵皮,用多少張制盒身,張白鐵皮,用多少張制盒身,多少張制盒底,可以既使做出的盒身和盒底配套,多少張制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白鐵皮?又能充分地利用白鐵皮? 解:設(shè)解:設(shè)x張白鐵皮做盒身張白鐵皮做盒身,列方程列方程 216x45(100 x) 解,得
20、解,得 x60 則做盒底的鐵皮為:則做盒底的鐵皮為:100 x40(張)(張) 答:用答:用60張白鐵皮做盒身,張白鐵皮做盒身,40張白鐵皮張白鐵皮做盒底做盒底 目前初中數(shù)學(xué)主要分成代數(shù)與幾何兩大部分,其中代數(shù)學(xué)的最大特點是引人了未知數(shù),建立方程,對未知數(shù)加以運(yùn)算而最早提出這一思想并加以舉例論述的,是古代數(shù)學(xué)名著算術(shù)一書,其作者是古希臘后期數(shù)學(xué)家一“代數(shù)學(xué)之父”丟番圖 丟番圖是希臘數(shù)學(xué)家,他的13卷巨著算術(shù)在代數(shù)符號、數(shù)論、代數(shù)方程解法等方面均有重要貢獻(xiàn),其不定方程理論對后世產(chǎn)生了巨大影響,以至后人把整系數(shù)不定方程稱為“丟番圖方程”關(guān)于丟番圖的生平,我們僅能從其墓志銘中略知梗概,這篇墓志銘本身
21、就是一個有趣的數(shù)學(xué)問題,因為被4世紀(jì)數(shù)學(xué)家麥特勞德爾收入一部數(shù)學(xué)問題集中,得以流傳至今:丟番圖的生平丟番圖的生平 這是一座石墓,里面安葬著丟番圖請你告訴我,丟番圖壽數(shù)幾何?他一生的六分之一是幸福的童年,十二分之一是無憂無慮的少年再過去七分之一的年程,他建立了幸福的家庭五年之后兒子出生,不料兒子竟先其父四年而終,只活到父親一半的年齡晚年喪子老人真可憐,悲痛之中渡過風(fēng)燭殘年請你告訴我,丟番圖壽數(shù)幾何?解:設(shè)丟番圖去世時的年齡為解:設(shè)丟番圖去世時的年齡為x歲,由題意歲,由題意可列方程可列方程11115461272xxxxx怎樣使這個方程轉(zhuǎn)化為x = a的形式? 請你列出方程算一算,丟番圖去世請你列出
22、方程算一算,丟番圖去世時的年齡?時的年齡?11115461272xxxxx 分析:分析: 為使方程變?yōu)檎禂?shù)方程,方程兩邊為使方程變?yōu)檎禂?shù)方程,方程兩邊應(yīng)該同乘以什么數(shù)?應(yīng)該同乘以什么數(shù)?各分母的最小公倍數(shù)各分母的最小公倍數(shù)84.去分母(方程兩邊同乘各去分母(方程兩邊同乘各分母的最小分倍數(shù))分母的最小分倍數(shù)) 移項移項 系數(shù)化為系數(shù)化為1 答:丟番圖去世時的年齡為答:丟番圖去世時的年齡為84歲歲合并同類項合并同類項 11115461272xxxxx14x7x12x42042x33684x14x7x12x42x 84x 42033621x756x84解:解: 這件珍貴的文物是紙莎草文書,是古代
23、埃這件珍貴的文物是紙莎草文書,是古代埃及人用象形文字寫在一種特殊的草上的著作,及人用象形文字寫在一種特殊的草上的著作,至今已有至今已有37003700多年的歷史了,在文書中記載了多年的歷史了,在文書中記載了許多有關(guān)數(shù)學(xué)的問題許多有關(guān)數(shù)學(xué)的問題 問題:問題: 一個數(shù),它的一個數(shù),它的三分之二,它的一半,它三分之二,它的一半,它的七分之一,它的全部,的七分之一,它的全部,加起來總共是加起來總共是33 解:設(shè)這個數(shù)為解:設(shè)這個數(shù)為x,可得方程:,可得方程: 33712132xxxx 為使方程變?yōu)檎禂?shù)方程,方程為使方程變?yōu)檎禂?shù)方程,方程兩邊應(yīng)該同乘以什么數(shù)?兩邊應(yīng)該同乘以什么數(shù)?各分母的最小公倍數(shù)
24、各分母的最小公倍數(shù)42解:去分母,得解:去分母,得28x21x6x42x1386合并同類項,得合并同類項,得97x1386系數(shù)化為系數(shù)化為1,得,得1 386x =.971 3861 386答答 : : 這這個個數(shù)數(shù)為為. .979733712132xxxx去分母時須注意 1.確定各分母的最小公倍數(shù);2.不要漏乘沒有分母的項;3.去掉分母后,若分子是多項式,要加括號,視多項式為一整體 解有分?jǐn)?shù)系數(shù)的一元一次方程的步驟: 1去分母; 2去括號; 3移項; 4合并同類項; 5系數(shù)化為1主要依據(jù):等式的性質(zhì)和運(yùn)算律等以上步驟是不以上步驟是不是一定要順序是一定要順序進(jìn)行,缺一不進(jìn)行,缺一不可?可? (
25、1)碧空萬里,一群大雁在飛翔,迎面又飛來)碧空萬里,一群大雁在飛翔,迎面又飛來一只小灰雁,它對群雁說:一只小灰雁,它對群雁說:“你們好,百只雁!你你們好,百只雁!你們百雁齊飛,好氣派!可憐我是孤雁獨(dú)飛們百雁齊飛,好氣派!可憐我是孤雁獨(dú)飛”群雁群雁中一只領(lǐng)頭的老雁說:中一只領(lǐng)頭的老雁說:“不對!小朋友,我們遠(yuǎn)遠(yuǎn)不對!小朋友,我們遠(yuǎn)遠(yuǎn)不足不足100只將我們這一群加倍,再加上半群,又加只將我們這一群加倍,再加上半群,又加上四分之一群,最后還得請你也湊上,那才一共是上四分之一群,最后還得請你也湊上,那才一共是100只呢,請問這群大雁有多少只?只呢,請問這群大雁有多少只? 112110024xxx解:設(shè)
26、這群大雁有解:設(shè)這群大雁有x只,只,列方程列方程解方程,得解方程,得x36提示:提示:練一練練一練 (2)火車用)火車用26秒的時間通過一個長秒的時間通過一個長256米米的隧道(即從車頭進(jìn)入入口到車尾離開出的隧道(即從車頭進(jìn)入入口到車尾離開出口),這列火車又以口),這列火車又以16秒的時間通過了長秒的時間通過了長96米的隧道,求火車的長度米的隧道,求火車的長度 解:設(shè)火車長度為解:設(shè)火車長度為x米,列方程米,列方程256962616xx 解,得解,得 x160答:火車的長度為答:火車的長度為160米米1251343( ( ) )xx 例例4:解方程:解方程 解:去分母(方程兩邊同乘解:去分母(
27、方程兩邊同乘12),得),得3(x1) 4(2x5) 312去括號,得去括號,得3x38x2036移項,得移項,得3x8x36320合并同類項,得合并同類項,得5x13系數(shù)化為系數(shù)化為1,得得135x 43125334( ( ) )xxxx解:去分母(方程兩邊同乘解:去分母(方程兩邊同乘12),得),得4(x4)12x5124(x3)3(x1) 去括號,得去括號,得4x1612x604x123x3移項,得移項,得4x12x4x3x1231660合并同類項,得合并同類項,得17x53系數(shù)化為系數(shù)化為1,得得5317x 2113623346( ( ) ) ( () )( () )xx解:去分母(兩
28、邊同乘解:去分母(兩邊同乘12),得),得8(x6) 3(2x3) 2去括號,得去括號,得8x486x92移項,得移項,得8x6x9248合并同類項,得合并同類項,得14x37系數(shù)化為系數(shù)化為1,得得37x =143x - 27(1)=;632x - 13x + 4(2)- 2 =+ 1;45x + 4-5x + 25x - 1(3)-= 3 +.346解下列方程:解下列方程:16x =381x = -28x =3練一練練一練 例例5:(:(1)一件工作,甲單獨(dú)做一件工作,甲單獨(dú)做25小小時完成,乙單獨(dú)做時完成,乙單獨(dú)做12小時完成那么兩人小時完成那么兩人合作多少小時完成?合作多少小時完成?分
29、析:本題是一個典型的工程類應(yīng)用題分析:本題是一個典型的工程類應(yīng)用題甲單獨(dú)做甲單獨(dú)做20小時完成的工作量小時完成的工作量+乙單獨(dú)做乙單獨(dú)做12小時完成的工作量小時完成的工作量=完成的工作總量完成的工作總量1 解:設(shè)兩人合作解:設(shè)兩人合作x小時完成此工作,小時完成此工作,可列方程可列方程 答:兩人合作答:兩人合作6小時完成小時完成 11510 xx去分母,得去分母,得4x6x60合并同類項,得合并同類項,得x6 (2)一件工作,甲單獨(dú)做)一件工作,甲單獨(dú)做15小時完成,小時完成,乙單獨(dú)做乙單獨(dú)做12小時完成甲先單獨(dú)做小時完成甲先單獨(dú)做6小時,然小時,然后乙加入合作,那么兩人合作還要多少小時后乙加入
30、合作,那么兩人合作還要多少小時完成?完成? 分析:把總工作量看作是分析:把總工作量看作是1設(shè)還要設(shè)還要x小時才能完成工作小時才能完成工作甲的工作總量乙的工作總量總工作量甲的工作總量乙的工作總量總工作量1答:兩人合作還要答:兩人合作還要4小時完成小時完成解:設(shè)兩人合作還需解:設(shè)兩人合作還需x小時完成此工作,小時完成此工作,列方程列方程611512xx去分母,得去分母,得4x245x60移項及合并同類項,得移項及合并同類項,得9x36系數(shù)化為系數(shù)化為1,得得x4 (3)一件工作,甲單獨(dú)做)一件工作,甲單獨(dú)做15小時完成,小時完成,甲、乙合做甲、乙合做6小時完成甲先單獨(dú)做小時完成甲先單獨(dú)做6小時,小
31、時,余下的乙單獨(dú)做,那么乙還要多少小時完成?余下的乙單獨(dú)做,那么乙還要多少小時完成? 分析:把總工作量看作是分析:把總工作量看作是1設(shè)乙還要設(shè)乙還要x小時才能完成工作小時才能完成工作甲的工作總量乙的工作總量總工作量甲的工作總量乙的工作總量總工作量1答:乙還要答:乙還要6小時完成小時完成解:設(shè)乙還需解:設(shè)乙還需x小時完成此工作,依題意可得:小時完成此工作,依題意可得:611115615()()x去分母,得去分母,得24(104)x60去括號,得去括號,得246x60移項,得移項,得6x36系數(shù)化為系數(shù)化為1,得得x6工程問題1工作量、工作時間、工作效率;2這三個基本量的關(guān)系是:工作量=工作時間工
32、作效率工作效率=工作量工作時間工作時間=工作量工作效率3工作總量通??醋鲉挝弧?” 小明預(yù)定搭乘家門口的公共汽車趕往火車小明預(yù)定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺在行駛了三分之一路程站,去家鄉(xiāng)看望爺爺在行駛了三分之一路程后,估計繼續(xù)乘公共汽車將會在火車開車后半后,估計繼續(xù)乘公共汽車將會在火車開車后半小時到達(dá)火車站,便隨即下車改乘出租車,車小時到達(dá)火車站,便隨即下車改乘出租車,車速提高了一倍,結(jié)果趕在火車開車前速提高了一倍,結(jié)果趕在火車開車前15分鐘到分鐘到達(dá)火車站已知公共汽車的平均速度是達(dá)火車站已知公共汽車的平均速度是40千米千米/時,問小明家到火車站有多遠(yuǎn)?時,問小明家到火車站有
33、多遠(yuǎn)?練一練練一練 解解:設(shè)小明家到火車站路程的設(shè)小明家到火車站路程的 為為x千米,千米,列方程:列方程:23114040224xx解,得解,得x60則小明家到火車站的路程為則小明家到火車站的路程為90千米千米答:小明家到火車站的路程為答:小明家到火車站的路程為90千米千米1解一元一次方程的步驟解一元一次方程的步驟: (1)去分母;)去分母; (2)去括號;)去括號; (3)移項;)移項; (4)合并同類項,化為最簡方程)合并同類項,化為最簡方程axb(a0)的形式;的形式; (5)系數(shù)化為)系數(shù)化為12 用一元一次方程解決實際問題方面用一元一次方程解決實際問題方面 1某工廠今年某工廠今年3月
34、份的產(chǎn)量是月份的產(chǎn)量是50萬元,萬元,5月份上升到月份上升到72萬元,設(shè)這兩個月的平均增長率萬元,設(shè)這兩個月的平均增長率為為x,則(,則( )A50(1x) 72 B50(1x) 50(1x)272C50(1x)x272D50(1x)272D 2甲、乙二人按甲、乙二人按2:5的比例投資開辦了的比例投資開辦了一家公司,約定除去各項開支外,所得利潤一家公司,約定除去各項開支外,所得利潤投資比例分成,若第一年贏得投資比例分成,若第一年贏得1400元,那么元,那么甲、乙二人分別應(yīng)分得(甲、乙二人分別應(yīng)分得( )A2000元和元和5000元元 B5000元和元和2000元元C4000元和元和10000元
35、元 D10000元和元和4000元元C3解下列方程:解下列方程:x 2x + 1(1)x= 3;33(3x 1) - 2(3x 1) + 2(2)(3x 1)= 3;230.4x + 0.80.3x 0.4(3)=+ 1.0.50.4- -x213x =15x32解解時時,方方程程有有唯唯一一解解,時時,方方程程解解為為任任意意有有理理數(shù)數(shù);時時, ,方方程程無無解解. .:(1)0;(2)0,0(3)0,0baaxbxaabaxbabaxb4討論關(guān)于討論關(guān)于x的方程的方程axb,的情況的情況 5已知已知2x與與12x5的值是相反數(shù),的值是相反數(shù),求求x的值的值解:根據(jù)題意得:解:根據(jù)題意得:
36、(2x1)()(12x5)去括號,得去括號,得 2x112x50稱項,得稱項,得 2x12x15合并同類項,得合并同類項,得 10 x6系數(shù)化為系數(shù)化為1,得得 x0.6答:答:x的值為的值為0.6321443當(dāng)當(dāng)為為何何值值時時, ,和和的的值值相相等等. .mmm解:根據(jù)題意,得解:根據(jù)題意,得321443= =mm解,得解,得545m 543214543答答: :當(dāng)當(dāng)時時, ,和和的的值值相相等等. .mmm 61. 1a = -22b = 13x = 24y = -12.152. 1x = 192x = -0.83x =4y = -44.717543. 1x = -2x =3y = -14y =.567();( );( );( )();( );( );( )();( );( );( )4.4.設(shè)設(shè)較較小小的的村村有有x x人人,較較大大的的村村有有(2x - 32x - 3)人人,則則 x + 2x - 3 = 834 x + 2x - 3 = 834,x = 279x = 279,2x - 3 = 555.2x - 3 = 555.5.5.設(shè)設(shè)甲甲登登上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 乳制品企業(yè)銷售經(jīng)理合同范本
- 臨時品牌專員招聘合同模板
- 科技園區(qū)建設(shè)土方開挖施工合同
- 銀行員工客戶信息保密承諾書
- 通信基站維護(hù)員合同范例
- 寫字樓水電維修工程師聘用協(xié)議
- 塑料廠給排水暖施工合同
- 互聯(lián)網(wǎng)公司文秘招聘協(xié)議
- 船舶管道保溫施工協(xié)議
- 廣告宣傳皮卡租賃合同
- 素描試卷家長會
- JGJ-T490-2021鋼框架內(nèi)填墻板結(jié)構(gòu)技術(shù)標(biāo)準(zhǔn)
- 2024年移動解決方案經(jīng)理認(rèn)證考試題庫大全-中(多選題)
- 無線測溫設(shè)備施工方案
- 2024年大學(xué)生網(wǎng)絡(luò)安全知識競賽題庫及答案(共70題)
- 2024秋期國家開放大學(xué)??啤豆芾韺W(xué)基礎(chǔ)》一平臺在線形考(形考任務(wù)一至四)試題及答案
- 森林康養(yǎng) 課件
- 畜牧師招聘筆試題及解答(某大型央企)2024年
- 酒店保潔服務(wù)投標(biāo)方案(技術(shù)方案)
- 我是小交警(教學(xué)設(shè)計)-2024-2025 學(xué)年六年級上冊綜合實踐活動蒙滬版
- 藝術(shù)中國智慧樹知到答案2024年上海戲劇學(xué)院
評論
0/150
提交評論