版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、lColor Image ProcessingnTechniques in Pseudo-Color Image processinguIntensity SlicinguColor LUT DesignsnNoise in Color ImagesuNoise in RGBuNoise in HSVnSmoothing of Color ImagesnSharpening of Color ImagesEECE-5626: Color Image Processing1/24lA black-and-white image is transformed into a color image
2、using pixel-point processing (color LUTs).lThe main application is for human visualization and interpretation of gray-level details.lThe principal challenge is to select a path through the color space that can “amplify” the low contrast details in the image.lTechniques:nIntensity SlicingnColor LUT d
3、esign (Gray-level to Color Transformations)EECE-5626: Color Image Processing2/24lIf an image is viewed as a 2-D intensity function, then this intensity can be sliced by a plane parallel to the coordinate plane. lIf we assign different colors on each side of the plane, any pixel with gray level above
4、 the plane is coded with one color and any pixel below the plane is coded with another color. lThe result is a two color image as shown.lThis approach can be extended to more than two planes.EECE-5626: Color Image Processing3/24lExampleTwo-level slicing:In this example, the gray-level 255 is assigne
5、d a color yello while the rest of the gray-levels, 0 254, are assigned color blue. The gray-level 255 signifies failure in a weld.EECE-5626: Color Image Processing4/24lExample: Eight-level slicingEECE-5626: Color Image Processing5/24lThese Look-Up Tables define a mapping from the 1-D gray-level spac
6、e to the 3-D RGB color space. This mapping is given by three PVMs, one for each primary color. Almost all modern image processing boards contain (programmable) hardware tables between a frame buffer and a monitor.EECE-5626: Color Image Processing6/24lThese gray-level transformations essentially are
7、unique paths from the black intensity (0) to the white intensity (1) in such a way that the assigned colors can aid in visualizing and identifying image features.EECE-5626: Color Image Processing7/24lDesign of these transformations requires a good knowledge of the color theory. Specifically, if we a
8、ssign complementary colors to the adjacent gray-levels then we can visualize these gray-levels better.EECE-5626: Color Image Processing8/24lSome typical transformations are:nSpectrum or RainbowEECE-5626: Color Image Processing9/24lTypical Transformations (continued)nSpectrum or Rainbow: ExampleEECE-
9、5626: Color Image Processing10/24lTypical Transformations (continued)nSoft Colors: Here each transformation is sine function of the same frequency but different phase. This produces soft colors and is useful in enhancing busy details.EECE-5626: Color Image Processing11/24lTypical Transformations (co
10、ntinued)nSoft Colors: ExampleEECE-5626: Color Image Processing12/24lTypical Transformations (continued)nSoft Colors: ExampleEECE-5626: Color Image Processing13/24lTypical Transformations (continued)nBitcolor: Here each bit plane is assigned a different color. For example, if we represent a pixel in
11、binary asb7b6b5b4b3b2b1b0then one possible scheme is:R R R G G G B BEECE-5626: Color Image Processing14/24lTypical Transformations (continued)nRandom : Here color schemes are assigned in a random fashion. Useful for images that have very smooth appearance.EECE-5626: Color Image Processing15/24lPrede
12、fined Colormaps:EECE-5626: Color Image Processing16/24lColor images are acquired (or formed) via color cameras that predominantly use the RGB color model and employ CCD array sensors for each R, G, and B color.lHence it is reasonable to model a “noisy” color image as being formed by the correspondin
13、g “noisy” R, G, and B component images.lThe noisy image model then iswhere is an equivalent RGB color noise image while each noise variable, R, G, or B is an independent noise field. xnoisy=x+hxnoisy,Rxnoisy,Gxnoisy,B=xRxGxB+hRhGhBEECE-5626: Color Image Processing17/24lExample: Noise in RGB space ve
14、rsus HSV spacef = imread(imagedir,Fig0604(a)(iris).tif); % Load image figure; imshow(f); % Show imageg = imnoise(f,gaussian,0,0.1); % Add Noise in RGB spacefigure; imshow(g); % Show imagew = rgb2hsv(f); % RGB to HSV Conversionw = imnoise(w,gaussian,0,0.1); % Add Noise in HSV spacew = hsv2rgb(w); % H
15、SV to RGB conversionfigure; imshow(w); % Show imageOriginal ImageNoise in RGBNoise in HSVEECE-5626: Color Image Processing18/24lSpatial averaging or smoothing of monochrome images is accomplished by convolving with a mask which is symmetric (to avoid phase distortion problems).lThe process of smooth
16、ing a color image is formulated in a similar fashion, except that instead of single pixels we now have three pixels at each spatial location as shown below:EECE-5626: Color Image Processing19/24lLet Sm,n denote a neighborhood centered at (m,n) in a color image. Then the average of an RGB image is gi
17、ven bywhere K is the number of pixels in the neighborhood.lThus the averaging over a neighborhood can be carried out either on the color vector space or on the individual component basis. y(n1,n2) =x(k1,k2)K(k1,k2)Sn1,n2=1KxR(k1,k2)(k1,k2)Sn1,n2xG(k1,k2)(k1,k2)Sn1,n2xB(k1,k2)(k1,k2)Sn1,n2EECE-5626:
18、Color Image Processing20/24lSmoothing steps:1. Extract the three component images: fR = f(:,:,1); fG = f(:,:,2); fB = f(:,:,3); 2. Filter each components individually fR_filt = imfilter(fR,h); fG_filt = imfilter(fG,h); fB_filt = imfilter(fB,h);3. Reconstruct the filtered RGB image f_filtered = cat(3
19、,fR_filt,fG_filt,fB_filt);lOr, perform the entire operation in a vector fashion on the RGB image f_filtered = imfilter(f,h);EECE-5626: Color Image Processing21/24lExample: Smoothing in RGB space versus HSV spacef = imread(imagedir,Fig0604(a)(iris).tif); imshow(f); h = fspecial(average,11);g = imfilter(f,h,same);figure; imshow(g);w = rgb2hsv(f); w = imfilter(w,h,same); w = hsv2rgb(w); figure; imshow(w);Origi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版宿舍樓智能監(jiān)控設施承包合同3篇
- 2025年度木材貿易與木工加工合作合同4篇
- 夏令營2025非傳統(tǒng)教育項目合作合同3篇
- 2025年度木材加工廠設備租賃合同范本7篇
- 《漢服唯美古詩句》課件
- 2025版實習員工實習期間住宿安排合同3篇
- 養(yǎng)生保健與中醫(yī)養(yǎng)生藥物考核試卷
- 合成革表面處理與涂飾技術考核試卷
- 2025版智能電網信息安全防護合同4篇
- 創(chuàng)業(yè)空間科技創(chuàng)新平臺考核試卷
- 《天潤乳業(yè)營運能力及風險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學倫理委員會章程
- xx單位政務云商用密碼應用方案V2.0
- 農民專業(yè)合作社財務報表(三張報表)
- 動土作業(yè)專項安全培訓考試試題(帶答案)
- 大學生就業(yè)指導(高職就業(yè)指導課程 )全套教學課件
- 死亡病例討論總結分析
- 第二章 會展的產生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標準規(guī)范
- 商戶用電申請表
評論
0/150
提交評論