2021-2022學(xué)年四川省涼山彝族自治州高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第1頁
2021-2022學(xué)年四川省涼山彝族自治州高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第2頁
2021-2022學(xué)年四川省涼山彝族自治州高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第3頁
2021-2022學(xué)年四川省涼山彝族自治州高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第4頁
2021-2022學(xué)年四川省涼山彝族自治州高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1雙曲線的漸近線方程為( )ABCD2已知全集,集合,則( )ABCD3若、滿足約束條件,則的最大值為( )ABCD4執(zhí)行如圖所示的程序框圖,則輸出的的值為( ) ABCD5

2、是平面上的一定點,是平面上不共線的三點,動點滿足 ,則動點的軌跡一定經(jīng)過的( )A重心B垂心C外心D內(nèi)心6下列命題中,真命題的個數(shù)為( )命題“若,則”的否命題;命題“若,則或”;命題“若,則直線與直線平行”的逆命題.A0B1C2D37已知函數(shù),若對任意的總有恒成立,記的最小值為,則最大值為( )A1BCD8函數(shù)的圖象的大致形狀是( )ABCD9五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為( )ABCD10已知函數(shù),且關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍( )ABCD11從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回

3、的摸取5次,設(shè)摸得白球數(shù)為,已知,則ABCD12在三棱錐中,且分別是棱,的中點,下面四個結(jié)論:;平面;三棱錐的體積的最大值為;與一定不垂直.其中所有正確命題的序號是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13的展開式中常數(shù)項是_.14定義在R上的函數(shù)滿足:對任意的,都有;當(dāng)時,則函數(shù)的解析式可以是_.15已知函數(shù)則_.16在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結(jié)果相同,則的最小

4、值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)心形線是由一個圓上的一個定點,當(dāng)該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標(biāo)系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標(biāo)原點的直角坐標(biāo)系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標(biāo)方程;(2)若曲線與相交于、三點,求線段的長.18(12分)已知數(shù)列,數(shù)列滿足,n(1)若,求數(shù)列的前2n項和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立當(dāng)數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;數(shù)列能否為等比數(shù)列?若能,請寫出所有滿

5、足條件的數(shù)列;若不能,請說明理由19(12分)已知函數(shù)f(x)=ex-x2 -kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于120(12分)在ABC中,分別為三個內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求ABC的面積21(12分)如圖,在矩形中,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.22(10分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當(dāng)時,求的取值范圍.參考答案一、選擇題:本題共12小題,每小

6、題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)雙曲線的標(biāo)準(zhǔn)方程,即可寫出漸近線方程.【詳解】 雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.2B【解析】直接利用集合的基本運算求解即可【詳解】解:全集,集合,則,故選:【點睛】本題考查集合的基本運算,屬于基礎(chǔ)題3C【解析】作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時對應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示由,得,平移直線,當(dāng)直線經(jīng)過點時,該直線在軸上的截距最大,此時取最大值,即.故選:

7、C.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.4B【解析】列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,執(zhí)行第一次循環(huán)時:,所以:不成立繼續(xù)進行循環(huán),當(dāng),時,成立,由于不成立,執(zhí)行下一次循環(huán),成立,成立,輸出的的值為.故選:B【點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型5B【解析】解出,計算并化簡可得出結(jié)論【詳解】(),即點P在BC邊的高上,即點P的軌跡經(jīng)過ABC的垂心故選B【點睛】本題考查了平面向量的數(shù)量積運算在

8、幾何中的應(yīng)用,根據(jù)條件中的角計算是關(guān)鍵6C【解析】否命題與逆命題是等價命題,寫出的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗證正確;寫出的逆命題判,利用兩直線平行的條件容易判斷正確.【詳解】的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;的逆否命題為“若且,則”,該命題為真命題,故為真命題;的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假. 判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識進行判斷(2)當(dāng)一個命題改寫成“

9、若,則”的形式之后,判斷這個命題真假的方法:若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;判定“若,則”是假命題,只需舉一反例即可7C【解析】對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),故令,得 當(dāng)時,當(dāng),當(dāng)時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.8B【解析】根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項.【詳解】函數(shù)易知為奇函數(shù),故排除

10、D.又,易知當(dāng)時,;又當(dāng)時,故在上單調(diào)遞增,所以,綜上,時,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.9D【解析】三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【

11、點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.10B【解析】根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結(jié)合即可【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,故選:B【點睛】本題主要考查函數(shù)圖象與方程零點之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題11B【解析】由題意知,由,知,由此能求出【詳解】由題意知,解得,故選:B【點睛】本題考查離散型隨機變量的方差的求法,解題時要認(rèn)真審題,仔細解答,注意二項分布的靈活運用12D【解析】

12、通過證明平面,證得;通過證明,證得平面;求得三棱錐體積的最大值,由此判斷的正確性;利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,又,所以平面,所以,故正確;因為,所以平面,故正確;當(dāng)平面與平面垂直時,最大,最大值為,故錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14(或,答案不唯一)【解析】

13、由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.15【解析】先由解析式求得(2),再求(2)【詳解】(2),所以(2),故答案為:【點睛】本題考查對數(shù)、指數(shù)的運算性質(zhì),分段函數(shù)求值關(guān)鍵是“對號入座”,屬于容易題1610【解析】先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三

14、組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k =10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)();(2).【解析】(1)化簡得到直線方程為,再利用極坐標(biāo)公式計算得到答案.(2)聯(lián)立方程計算得到,計算得到答案 .【詳解】(1)由消得,即,是過原點且傾斜角為的直線,的極坐標(biāo)方程為().(2)由得,由得,.【點睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計算能力和應(yīng)用能

15、力.18(1)(2)見解析數(shù)列不能為等比數(shù)列,見解析【解析】(1)根據(jù)數(shù)列通項公式的特點,奇數(shù)項為等差數(shù)列,偶數(shù)項為等比數(shù)列,選用分組求和的方法進行求解;(2)設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時,得出;當(dāng)n為偶數(shù)時,得出,從而可證數(shù)列,的公差相等;利用反證法,先假設(shè)可以為等比數(shù)列,結(jié)合題意得出矛盾,進而得出數(shù)列不能為等比數(shù)列【詳解】(1)因為,所以,且,由題意可知,數(shù)列是以1為首項,2為公差的等差數(shù)列,數(shù)列是首項和公比均為4的等比數(shù)列,所以;(2)證明:設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時,若,則當(dāng)時,即,與題意不符,所以, 當(dāng)n為偶數(shù)時,若,則當(dāng)時,即,與題意不符,所以,綜上,

16、原命題得證;假設(shè)可以為等比數(shù)列,設(shè)公比為q,因為,所以,所以,因為當(dāng)時,所以當(dāng)n為偶數(shù),且時,即當(dāng)n為偶數(shù),且時,不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列【點睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時一般是結(jié)合通項公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細思細算,本題綜合性較強,難度較大,側(cè)重考查邏輯推理和數(shù)學(xué)運算的核心素養(yǎng).19(1);(2)見解析【解析】(1)求出,記,問題轉(zhuǎn)化為方程有兩個不同解,求導(dǎo),研究極值即可得結(jié)果 ;(2)由(1)知,在區(qū)間上存在極大值點,且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由, 記,由

17、,且時,單調(diào)遞減,時,單調(diào)遞增, 由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為, 記,則,因為,所以,所以時,單調(diào)遞減,時,單調(diào)遞增, 所以,即函數(shù)的極大值不小于1. 解法二:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為, 因為,所以.即函數(shù)的極大值不小于1.【點睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.20(1); (2).【解析】(1)整理得:,再由余弦定理可得,問題得解(2)由正弦定理得:,再代入即可得解【詳解】(1)由題意,得,;(2)由正弦定理,得,,.【點睛】本題主要考查了正、

18、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡能力,屬于基礎(chǔ)題21(1)見解析;(2)【解析】(1)取的中點,連接,由,進而,由,得. 進而平面,進而結(jié)論可得證(2)(方法一)過點作的平行線交于點,以點為坐標(biāo)原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點,連接,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標(biāo)原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則點,所以,.設(shè)平面的法向量為,由,得,令,得.同理,設(shè)平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點,上的點,使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,所以.【點睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題22(1)見解析;(2).【解析】(1)分兩種情況討論:兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結(jié)論成立;兩切線、的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論