




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考試結束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目
2、要求的。1若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為( ). A6500元B7000元C7500元D8000元2九章算術中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為( )A4B8CD3函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)a的取值范圍是( )ABCD4已知,由程序框圖輸出的為( )A1B0CD5如圖,內(nèi)接于圓,是圓的直徑,則三棱錐體積的最大值為( )ABCD6已知直線y=k
3、(x+1)(k0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA| =( )A1B2C3D47已知橢圓的焦點分別為,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為( )ABCD8將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關于直線對稱,則函數(shù)在上的值域是( )ABCD9博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓某嘉賓突發(fā)奇想,設計兩種乘車方案方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車記方案一與方案二坐到“3號
4、”車的概率分別為P1,P2,則( )AP1P2BP1P2CP1+P2DP1P210拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為( )ABC1D11設是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當時,則,的大小關系是( )ABCD12函數(shù)的圖象如圖所示,則它的解析式可能是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13棱長為的正四面體與正三棱錐的底面重合,若由它們構成的多面體的頂點均在一球的球面上,則正三棱錐的內(nèi)切球半徑為_.14展開式中項系數(shù)為160,則的值為_.15將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一
5、組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為_.16若正三棱柱的所有棱長均為2,點為側棱上任意一點,則四棱錐的體積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某企業(yè)原有甲、乙兩條生產(chǎn)線,為了分析兩條生產(chǎn)線的效果,先從兩條生產(chǎn)線生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值該項指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品乙生產(chǎn)線樣本的頻數(shù)分布表質(zhì)量指標合計頻數(shù)2184814162100(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,以從樣本中任意抽取一件產(chǎn)品且為合格品的頻率近似代替從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任意抽
6、取一件產(chǎn)品且為合格品的概率,估計從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件恰有2件為合格品的概率;(2)現(xiàn)在該企業(yè)為提高合格率欲只保留其中一條生產(chǎn)線,根據(jù)上述圖表所提供的數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與生產(chǎn)線有關?若有90%把握,請從合格率的角度分析保留哪條生產(chǎn)線較好?甲生產(chǎn)線乙生產(chǎn)線合計合格品不合格品合計附:,0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87918(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,
7、過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.19(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.20(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.21(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是線段EF的中點求證:(1)AM平面BDE;(2)AM平面BDF.
8、22(10分)如圖,在四棱錐中底面是菱形,是邊長為的正三角形,為線段的中點求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可【詳解】設目前該教師的退休金為x元,則由題意得:600015%x10%1解得x2故選D【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題2B【解析】由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【
9、詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.3C【解析】顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個零點在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因為的一個零點在區(qū)間內(nèi),所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.4D【解析】試題分析:,所以,所以由程序框圖輸出的為.故選D考點:1、程序框圖;2、定積
10、分5B【解析】根據(jù)已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B【點睛】本題考查求棱錐體積的最大值解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數(shù)關系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值6C【解析】方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質(zhì)求得點的橫坐標,根據(jù)拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯(lián)
11、立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又 由得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.7B【解析】根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學生的計算能力,屬于中檔題8D【解析】由
12、題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結果.【詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關于直線對稱,函數(shù).在上,故,即的值域是,故選:D.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題9C【解析】將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1;方案二坐車可能:312、321,所以,P1;所以P1+P2故選C.【點睛】本題考查了古典概型的概率的求法,常用
13、列舉法得到各種情況下基本事件的個數(shù),屬于基礎題.10B【解析】設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.11C【解析】y=f(x+1)是偶函數(shù),f(-x+1)=f(x+1),即函數(shù)f(x)關于x=1對稱當x1時,為減函數(shù),f(log32)=
14、f(2-log32)= f()且=log34,log343,bac,故選C12B【解析】根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項, 與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側棱長,可得正三棱錐的三條側棱兩兩相互垂直,進而求出體積與表面積,設內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑【詳解】由題意可知:
15、多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設三角形 的外接圓的半徑為,則,解得,設外接球的半徑為,則可得,即,解得,設正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側棱兩兩相互垂直,所以,設內(nèi)切球的半徑為,即解得:故答案為:.【點睛】本題考查多面體與球的內(nèi)切和外接問題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.14-2【解析】表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【點睛】本題考查由二項式指定項的系數(shù)
16、求參數(shù),屬于簡單題.15【解析】先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.16【解析】依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解: 正三棱柱的所有棱長均為2,則,
17、點到平面的距離為點到直線的距離所以,所以.故答案為: 【點睛】本題考查椎體的體積公式,考查運算能力,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)0.0081(2)見解析,保留乙生產(chǎn)線較好【解析】(1)先求出任取一件產(chǎn)品為合格品的頻率,“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發(fā)生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,樣本中任取一件產(chǎn)品為合格品的頻率為:設“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取一件且為合格品”為事件,事件發(fā)生的概率為,則由樣本可
18、估計那么“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發(fā)生2次,其概率為:(2)列聯(lián)表:甲生產(chǎn)線乙生產(chǎn)線合計合格品9096186不合格品10414合計100100200的觀測值,有90%把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與生產(chǎn)線有關由(1)知甲生產(chǎn)線的合格率為0.9,乙生產(chǎn)線的合格率為,保留乙生產(chǎn)線較好【點睛】此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,屬于較易題目.18(1):,:;(2)【解析】(1)根據(jù)點斜式寫出直線的直角坐標方程,并轉(zhuǎn)化為極坐標方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參
19、數(shù)方程代入曲線的普通方程,結合直線參數(shù)的幾何意義以及根與系數(shù)關系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得. 設,對應的參數(shù)分別為,所以,在的兩側.則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.19(1):,直線:;(2)【解析】(1)由消參法把參數(shù)方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,曲線的極坐標方程是;由,化為直角坐標方程為(2)設,則,當時,取得最大值為【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 承包合同終止協(xié)議
- 木材公司銷售合同
- 平面模特拍攝合同
- 電力施工勞務合同
- 漫畫助理外包合同
- 油漆勞務分包合同協(xié)議書
- 無人機物流配送運營合作項目合同
- 商丘幼兒師范高等專科學?!堵眯猩缃?jīng)營管理》2023-2024學年第二學期期末試卷
- 山東管理學院《高階地質(zhì)資源勘查與評價》2023-2024學年第二學期期末試卷
- 文華學院《地理科學類專業(yè)導論》2023-2024學年第二學期期末試卷
- 溶劑油MSDS危險化學品安全技術說明書
- 馬工程西方經(jīng)濟學(第二版)教學課件-2
- 慢阻肺的慢病管理課件
- (中職)化學分析技術項目一 走進化學分析實驗室教學課件
- 探放水工培訓教材
- 某縣某年度高標準基本農(nóng)田建設項目復核報告
- 秘書實務完整版課件全套ppt教程
- 酒店電子商務全套課件
- 質(zhì)量體系的職能架構
- 《旅游經(jīng)濟學》全書PPT課件
- 幼兒園一日活動流程表
評論
0/150
提交評論