版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、COMP231 Tutorial 6Functional Dependencies and Normalization 2Review: We want to decompose SchemasDecompositionR=A,B,C,D,ER1=A,B,C, R2=D,ELossless-join decomposition (complete reproduction)Satisfy normal forms (BCNF or 3NF)Dependency preservingR = A,B,C,D,E. F = ABC, CD E, B D, EA .Is the following d
2、ecomposition a lossless join?1) R1 = A,B,C,R2 =A,D,E.2) R1 = A,B,C,R2 =C,D,E.1) Since R1 R2 = A, and A is a key for R1, the decomposition is lossless join.2)Since R1 R2 = C, and C is not a key for R1 or R2, the decomposition is not lossless join.Exercise 1: Lossless-join DecompositionR = A,B,C,D,E.F
3、 = ABC, CD E, B D, EA .R1 = A,B,C, R2 = A,D,E.Is the above decomposition dependency-preserving?No.CD E and B D are lost. Exercise 2 : FD-Preserving DecompositionBCNF: R is in BCNF if and only iffor each FD: X A in F+ThenA X (trivial FD), orX is a superkey for R In other words, the left part of any n
4、on-trivial dependency must be a superkey.* If we do not have redundancy in F, then for each X A , X must be a candidate key.* The decomposition is lossless-join but may not be dependency-preserving.Review: Boyce-Codd Normal Form3NF: R is in 3NF if and only iffor each FD: X A in F+A X (trivial FD), o
5、rX is a superkey for R, orA is prime attribute for R If a relation is in BCNF, it is in 3NF (since BCNF permits only the first two conditions).If every FD that does not contain extraneous (useless) attributes, then for each X A , X must be a candidate key, or A must belong to a candidate key.The dec
6、omposition is both lossless-join and dependency-preserving.Review: Third Normal FormR =(A, B, C, D).F = CD, CA, BC.Question 1: Identify all candidate keys for R.Question 2: Does R satisfy 3NF or BCNF?Question 3: Decompose R into a set of BCNF relations.Question 4: Decompose R into a set of 3NF relat
7、ions.Exercise 3R =(A, B, C, D).F = CD, CA, BC.Question 1: Identify all candidate keys for R. B+ = B (BB) = BC (BC) = BCD (CD) = ABCD (CA) so the candidate key is B. B is the ONLY candidate key, because nothing determines B: There is no rule that can produce B, except B B.Exercise 3 (cont)R =(A, B, C
8、, D).F = CD, CA, BC. Question 2: Does R satisfy 3NF or BCNF? R is not 3NF, because: CD causes a violation,CD is non-trivial (D C).C is not a superkey.D is not part of any candidate key.CA causes a violationSimilar to aboveBC causes no violation Since R is not 3NF, it is not BCNF either.Exercise 3 (c
9、ont)R =(A, B, C, D).F = CD, CA, BC.Question 3: Decompose R into a set of BCNF relations.CD, CA violas BCNF. Take CD: decompose R to R1= A, B, C , R2=C, D.R1 violates BCNF (because of CA)Decompose R1 to R11 = B, C R12 = C, A.Final decomposition: R2 = C, D, R11 = B, C, R12 = C, A.No more violations: F
10、inished!Exercise 3 (cont)Let R be the initial table with FDs FS=RUntil all relation schemes in S are in BCNFfor each R in S for each FD X Y that violates BCNF for RS = (S R) (R-Y) (X,Y)enduntilR =(A, B, C, D).F = CD, CA, BC.Question 4: Decompose R into a set of 3NF relations.Compute canonical cover
11、Fc = CDA, BC. Create a table for each functional dependency in Fc R1 = C, D, A, R2 = B, C.The table R2 contains the candidate key Finished. Exercise 3 (cont)Compute the canonical cover Fc of FS=for each FD XY in the canonical cover FcS=S(X,Y) if no scheme contains a candidate key for R Choose any ca
12、ndidate key CNS=S table with attributes of CNExercise 4R = (A, B, C, D) F = ABC, ABD, CA, DBIs R in 3NF, why? If it is not, decompose it into 3NFIs R in BCNF, why? If it is not, decompose it into BCNFExercise 4R = (A, B, C, D) F = ABC, ABD, CA, DBIs R in 3NF, why? If it is not, decompose it into 3NF
13、Yes. Find all the Candidate Keys: AB, BC, CD, AD Check all FDs in F for 3NF condition2. Is R in BCNF, why? If it is not, decompose it into BCNFNo. CA, C is not a superkey. Similar for DBBegin with CA or begin with DB get the same result: R1 = C, D, R2 = A, C, R3 = B, DMore Exercise 5R = (A, B, C, D)F = ABCD, DA 1. Identify all the candidate keys for RCandidate keys: ABC, BCD 2. Identify the highest normal form that R satisfiesR is in 3NF but not BCNF. 3. If R is not in BCNF, decompose it into a set of BCNF relations that
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年家具搬運(yùn)與安裝一體化合同
- 2024年城市軌道交通安全保障系統(tǒng)合同
- 04年農(nóng)產(chǎn)品采購(gòu)與銷售合同
- 04專業(yè)網(wǎng)絡(luò)安全防護(hù)解決方案實(shí)施合同
- 2024城市宣傳拍攝基地租賃協(xié)議
- 2024年工傷賠償款一次性了結(jié)合同
- 2024年寵物保護(hù)運(yùn)輸合同
- 2024年專版:電子設(shè)備銷售合同
- 2024年廣告制作合同:廣告創(chuàng)意、制作流程、費(fèi)用等詳細(xì)條款
- GB-Z19579—2012卓越績(jī)效評(píng)價(jià)準(zhǔn)則實(shí)施指引
- 各種閥門的用途及分類
- 排油煙設(shè)施清洗作業(yè)的風(fēng)險(xiǎn)識(shí)別、評(píng)價(jià)及控制
- Lindmark平衡評(píng)分標(biāo)準(zhǔn)(WHO認(rèn)證)
- 銅唑等17 種防腐劑對(duì)毛竹的室內(nèi)耐腐試驗(yàn)※
- 壓電陶瓷蜂鳴片項(xiàng)目可行性研究報(bào)告寫(xiě)作范文
- 通道農(nóng)藥殘留檢測(cè)儀操作說(shuō)明書(shū)
- 冷庫(kù)工程施工質(zhì)量保證體系及質(zhì)量保證措施
- 數(shù)碼插畫(huà)課件新版]
- 八年級(jí)數(shù)學(xué)上冊(cè)期中考試試卷分析
- 毽球校本課程開(kāi)發(fā)綱要
評(píng)論
0/150
提交評(píng)論