版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1中,點(diǎn)在邊上,平分,若,則( )ABCD2若滿足約束條件則的最大值為( )A10B8C5D33已知,則a,b,c的大小關(guān)系為( )ABCD4已知集合,則為( )ABCD5中國(guó)古代用算籌來進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位用縱式表示,十位、千位、十萬位用橫式表示,則56846可用算籌表示為( )ABCD6已知向量,若,則( )ABCD7已知的展開式中第
3、項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為( )ABCD8函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)的一條對(duì)稱軸是( )ABCD9是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則( )ABCD10已知雙曲線 (a0,b0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是( )AB(1,2),CD11已知實(shí)數(shù)x,y滿足,則的最小值等于( )ABCD12曲線在點(diǎn)處的切線方程為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖在三棱柱中,點(diǎn)為線段上一動(dòng)點(diǎn),則的最小值
4、為_.14已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則_.15已知,是平面向量,是單位向量.若,且,則的取值范圍是_.16若的展開式中各項(xiàng)系數(shù)之和為32,則展開式中x的系數(shù)為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:分?jǐn)?shù)不少于1
5、20分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012
6、.7063.8415.0246.6357.87910.828(參考公式其中)18(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大?。唬?)若,求面積的最大值.19(12分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn)求橢圓的標(biāo)準(zhǔn)方程;若時(shí),求實(shí)數(shù);試問的值是否與的大小無關(guān),并證明你的結(jié)論20(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)數(shù)根,求證:.21(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)
7、系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)AB,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.22(10分)已知都是各項(xiàng)不為零的數(shù)列,且滿足其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列(1)若數(shù)列是常數(shù)列,求數(shù)列的通項(xiàng)公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),求證:對(duì)任意的恒成立參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分
8、線定理可得,又,.故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.2D【解析】畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為 的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時(shí),邊界線的虛實(shí)問題.3D【解析】與中間值1比較,可用換底公式化為同底數(shù)對(duì)數(shù),再比較大小【詳解】,又,即,故選:D.【點(diǎn)睛】本題考查冪和
9、對(duì)數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對(duì)數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較4C【解析】分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧?,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.5B【解析】根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案【詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的故選:【點(diǎn)睛】本題主要考查學(xué)生的合情推
10、理與演繹推理,屬于基礎(chǔ)題6A【解析】根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】, ,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.7D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和8D【解析】由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得, 平移后得到函數(shù)解析式為,再求其對(duì)稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移
11、變換,屬基礎(chǔ)題.9B【解析】設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,取的三等分點(diǎn)、如圖,則,所以、,由題意設(shè),和都是等邊三角形,為的中點(diǎn),平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線面所成
12、的角的求法,及正切值為定值時(shí)的情況,屬于中等題10A【解析】若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍【詳解】已知雙曲線的右焦點(diǎn)為,若過點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,離心率,故選:【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件11D【解析】設(shè),去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),恒成立,故則的最小值等于.故選:【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意
13、在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平12A【解析】將點(diǎn)代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點(diǎn)斜式求的切線方程.【詳解】曲線,即,當(dāng)時(shí),代入可得,所以切點(diǎn)坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點(diǎn)斜式可得切線方程為,即,故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點(diǎn)的切線方程求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】把 繞著進(jìn)行旋轉(zhuǎn),當(dāng)四點(diǎn)共面時(shí),運(yùn)用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個(gè)平面,展開圖如圖所示,若,三點(diǎn)共線時(shí)最小為,為直角三角形,故答案為:【點(diǎn)睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點(diǎn)之
14、間線段最短,解直角三角形進(jìn)行求解,考查了空間想象能力和計(jì)算能力,屬于中檔題.14【解析】設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,由于與的等差中項(xiàng)為,則,則,因此,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.15【解析】先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解【詳解】由是單位向量若,設(shè),則,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,故答案為:,【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平16
15、2025【解析】利用賦值法,結(jié)合展開式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項(xiàng)式的展開式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)詳見解析期望;方差【解析】(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)
16、算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,所以,的分布列:從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問題,屬于基礎(chǔ)題.18(1
17、);(2).【解析】(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡(jiǎn)邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得: ,又 ,即由得:(2)由余弦定理得:又(當(dāng)且僅當(dāng)時(shí)取等號(hào)) 即三角形面積的最大值為:【點(diǎn)睛】本題考查解三角形的相關(guān)知識(shí),涉及到正弦定理化簡(jiǎn)邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導(dǎo)公式的應(yīng)用等知識(shí),屬于??碱}型.19(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應(yīng)用,在于直線交橢圓兩交點(diǎn)M,N的橫坐
18、標(biāo)為,這樣代入橢圓方程,容易得到,從而解得;(3) 需討論斜率是否存在一方面斜率不存在即=時(shí),由(2)得;另一方面,當(dāng)斜率存在即時(shí),可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達(dá)定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關(guān)試題解析:(1),得:,橢圓方程為(2)當(dāng)時(shí),得:,于是當(dāng)=時(shí),于是,得到(3)當(dāng)=時(shí),由(2)知當(dāng)時(shí),設(shè)直線的斜率為,則直線MN:聯(lián)立橢圓方程有,=+=得綜上,為定值,與直線的傾斜角的大小無關(guān)考點(diǎn):(1)待定系數(shù)求橢圓方程;(2)橢圓簡(jiǎn)單的幾何性質(zhì);(3)直線與圓錐曲線20(1);(2)當(dāng)時(shí),在上是減函數(shù);當(dāng)時(shí),在上是增函數(shù);(3)證明見解
19、析.【解析】(1)當(dāng)時(shí),求得其導(dǎo)函數(shù) ,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導(dǎo)函數(shù),并得出導(dǎo)函數(shù)取得正負(fù)的區(qū)間,可得出函數(shù)的單調(diào)性; (3)當(dāng)時(shí),由(2)得的單調(diào)區(qū)間,以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,構(gòu)造函數(shù),分析其導(dǎo)函數(shù)的正負(fù)得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當(dāng)時(shí),所以 ,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,令,得,所以當(dāng)時(shí),當(dāng)時(shí),所以在上是減函數(shù),在上是增函數(shù);(3)當(dāng)時(shí),由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時(shí),當(dāng)時(shí),所以當(dāng)方程有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè),且有,構(gòu)造函數(shù),則,當(dāng)時(shí),所以,在上單調(diào)遞減,且,由 ,在上單調(diào)遞增, .所以.【點(diǎn)睛】本題考查運(yùn)用導(dǎo)函數(shù)求函數(shù)在某點(diǎn)的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當(dāng)?shù)暮瘮?shù),得出其導(dǎo)函數(shù)的正負(fù),得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.21(1);(2)1.【解析】(1)利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新型能源汽車短期借用協(xié)議書4篇
- 2025年度文化產(chǎn)業(yè)發(fā)展基金投資合作合同4篇
- 2025年度智能家居櫥柜定制工程協(xié)議書4篇
- 2025年度新能源車輛租賃代理合同模板3篇
- 2024版離婚協(xié)議年范本
- 2025年單梁橋式起重機(jī)項(xiàng)目可行性研究報(bào)告-20250102-152444
- 2025年中鹽青海昆侖堿業(yè)有限公司招聘筆試參考題庫含答案解析
- 2025年四川壯禾人力資源有限公司招聘筆試參考題庫含答案解析
- 2025年中國(guó)郵政證券有限責(zé)任公司招聘筆試參考題庫含答案解析
- 2025年江蘇弘景建設(shè)規(guī)劃有限公司招聘筆試參考題庫含答案解析
- 漆畫漆藝 第三章
- CB/T 615-1995船底吸入格柵
- 光伏逆變器一課件
- 貨物供應(yīng)、運(yùn)輸、包裝說明方案
- (完整版)英語高頻詞匯800詞
- 《基礎(chǔ)馬來語》課程標(biāo)準(zhǔn)(高職)
- IEC61850研討交流之四-服務(wù)影射
- 《兒科學(xué)》新生兒窒息課件
- 材料力學(xué)壓桿穩(wěn)定
- 人教版小升初英語知識(shí)點(diǎn)匯總
- 靜態(tài)爆破專項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論