版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1執(zhí)行如圖所示的程序框圖,若輸入,則輸出的( )A4B5C6D72已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是( )ABCD3圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為( ) ABCD4函數(shù) 的部分圖
2、象如圖所示,則 ( )A6B5C4D35已知集合,則等于( )ABCD6若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為( )A85B84C57D567已知集合則( )ABCD8若為純虛數(shù),則z( )AB6iCD209已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是( )ABCD10在條件下,目標函數(shù)的最大值為40,則的最小值是( )ABCD211已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為( )ABCD212已知等比數(shù)列的各項均為正數(shù),設其前n項和,若
3、(),則( )A30BCD62二、填空題:本題共4小題,每小題5分,共20分。13已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為_.14某地區(qū)連續(xù)5天的最低氣溫(單位:)依次為8,0,2,則該組數(shù)據(jù)的標準差為_.15若,則_,_.16已知橢圓:的左,右焦點分別為,過的直線交橢圓于,兩點,若,且的三邊長,成等差數(shù)列,則的離心率為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.18(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過
4、作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.19(12分)設函數(shù),直線與函數(shù)圖象相鄰兩交點的距離為.()求的值;()在中,角所對的邊分別是,若點是函數(shù)圖象的一個對稱中心,且,求面積的最大值.20(12分)已知拋物線的焦點為,點在拋物線上,直線過點,且與拋物線交于,兩點(1)求拋物線的方程及點的坐標;(2)求的最大值21(12分)已知橢圓的左,右焦點分別為,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,四邊形ABCD內(nèi)接于橢圓E,記直線AD,BC的斜率分別為,求證:為定值.22(10分)已知函數(shù)(1)討論的單調(diào)性并指出相應單調(diào)區(qū)間
5、;(2)若,設是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.2A【解析】由題可得出的坐標為,再利用點對稱的性質,即可求出和.【詳解】根據(jù)題意,所以點的坐標為,又 ,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.3B【解析】三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據(jù)三視圖
6、可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為. 故選:B.【點睛】本題考查三視圖以及不規(guī)則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎題.4A【解析】根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果【詳解】由圖象得,令=0,即=k,k=0時解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不
7、大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.5B【解析】解不等式確定集合,然后由補集、并集定義求解【詳解】由題意或,故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎題型6A【解析】先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎題.7B【解析】解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查
8、了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎題.8C【解析】根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】 為純虛數(shù),且得,此時故選:C.【點睛】本題考查復數(shù)的概念與運算,屬基礎題.9A【解析】雙曲線=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(xc),與y=x聯(lián)立,可得交點M(,),點M在以線段F1F1為直徑的圓外,|OM|OF1|,即有+c1,3,即b13a1,c1a13a1,即c1a則e=1雙曲線離心率的取值范圍是(1,+)故選:A點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據(jù)a,b,c的
9、關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.10B【解析】畫出可行域和目標函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數(shù),根據(jù)圖像知:當時,有最大值為,即,故.當,即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學生的綜合應用能力.11A【解析】設點的坐標為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結合,可得到的齊次方程,進而可求出離心率的值.【詳解】設點的坐標為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的
10、兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點睛】本題考查雙曲線的離心率,構造的齊次方程是解決本題的關鍵,屬于中檔題.12B【解析】根據(jù),分別令,結合等比數(shù)列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數(shù)列前n項和公式進行求解即可.【詳解】設等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數(shù)列的通項公式和前n項和公式的應用,考查了數(shù)學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先根據(jù)弦長,半徑,弦心距之間的關系列式求得,代入整理得,利用基本不等式求
11、得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當且僅當時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關系,考核基本不等式求最值,關鍵是對目標式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.14【解析】先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標準差【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標準差為1故答案為:1【點睛】本題考查一組數(shù)據(jù)據(jù)的標準差的求法,考查平均數(shù)、方差、標準差的定義等基礎知識,考查運算求解
12、能力,屬于基礎題15 【解析】根據(jù)誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.16【解析】設,根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,成等差數(shù)列,設,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,在直角中,由勾股定理,即:,離心率.故答案為:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應用,考查計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1)根據(jù)正弦定理到,得到答案.(2)計算,
13、再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.18(1);(2),理由見解析.【解析】(1)求出橢圓的上、下焦點坐標,利用橢圓的定義求得的值,進而可求得的值,由此可得出橢圓的方程;(2)設點的坐標為,求出直線的方程,求出點的坐標,由此計算出直線和的斜率,可計算出的值,進而可求得的值,即可得出結論.【詳解】(1)由題意可知,橢圓的上焦點為、,由橢圓的定義可得,可得,因此,所求橢圓的方程為;(2)設點的坐標為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點,直線的
14、斜率為,直線的斜率為,所以,因此,.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中定值問題的求解,考查計算能力,屬于中等題.19()3;().【解析】()函數(shù),利用和差公式和倍角公式,化簡即可求得;()由()知函數(shù),根據(jù)點是函數(shù)圖象的一個對稱中心,代入可得,利用余弦定理、基本不等式的性質即可得出.【詳解】() 的最大值為最小正周期為 ()由題意及()知,,故故的面積的最大值為.【點睛】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質、余弦定理、基本不等式的性質,考查理解辨析能力與運算求解能力,屬于中檔基礎題.20(1),;(2)1【解析】(1)根據(jù)拋物線上的點到焦點和準線的距離相
15、等,可得p值,即可求拋物線C的方程從而可得解;(2)設直線l的方程為:x+my10,代入y24x,得,y2+4my40,設A(x1,y1),B(x2,y2),則y1+y24m,y1y24,x1+x22+4m2,x1x21,(),(x22,),由此能求出的最大值【詳解】(1)點F是拋物線y22px(p0)的焦點,P(2,y0)是拋物線上一點,|PF|3,23,解得:p2,拋物線C的方程為y24x,點P(2,n)(n0)在拋物線C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),設直線l的方程為:x+my10,代入y24x,整理得,y2+4my40設A(x1,y1),B(x2,y2)
16、,則y1,y2是y2+4my40的兩個不同實根,y1+y24m,y1y24,x1+x2(1my1)+(1my2)2m(y1+y2)2+4m2,x1x2(1my1)(1my2)1m(y1+y2)+m2y1y21+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1當m時,取最大值1【點睛】本題考查拋物線方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題21(1)(2)證明見解析【解析】(1)設橢圓E的半焦距為c,由題意
17、可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,因為,所以可設直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關系,再代入斜率公式可證得為定值.【詳解】(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,故橢圓E的標準方程為.(2)根據(jù)題意可知,因為,所以可設直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點睛】本題考查橢圓標準方程的求解、橢圓中的定值問題,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的運用.22(1)答案見解析(2)【解析】(1)先對函數(shù)進行求導得,對分成和兩種情況討論,從而得到相應的單調(diào)區(qū)間;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年茶葉收購與倉儲管理合同2篇
- 水電安裝工程2025年度合同書協(xié)議2篇
- 二零二五版快遞物流服務質量監(jiān)控與評估協(xié)議合同2篇
- 二零二五年電子供應鏈采購合同3篇
- 二零二五年度校園巴士運營管理合同范本3篇
- 二零二五年高端餐飲會所租賃承包合同范本3篇
- 2025年危險品運輸及應急處理合同3篇
- 二零二五版物流倉儲與新能源利用合同3篇
- 小學教師事業(yè)單位聘用合同(2篇)
- 二零二五年度綠色交通PPP特許經(jīng)營權轉讓合同3篇
- 【大學課件】微型計算機系統(tǒng)
- (主城一診)重慶市2025年高2025屆高三學業(yè)質量調(diào)研抽測 (第一次)英語試卷(含答案)
- 2025關于標準房屋裝修合同的范本
- 中國建材集團有限公司招聘筆試沖刺題2025
- 2024年馬克思主義基本原理知識競賽試題70題(附答案)
- 2024年湖北省中考物理真題含解析
- 荔枝病蟲害防治技術規(guī)程
- 資金借貸還款協(xié)議
- 《實驗性研究》課件
- 中國革命戰(zhàn)爭的戰(zhàn)略問題(全文)
- 《阻燃材料與技術》課件全套 顏龍 第1講 緒論 -第11講 阻燃性能測試方法及分析技術
評論
0/150
提交評論