




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合,ByN|yx1,xA,則AB( )A1,0,1,2,3B1,0,1,2C0,1,2Dx1x22在正方體中
2、,分別為,的中點,則異面直線,所成角的余弦值為( )ABCD3復數(shù)的共軛復數(shù)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限4已知集合,若,則( )A或B或C或D或5一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是( )ABCD6已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點若雙曲線的離心率為2,三角形AOB的面積為,則p=( )A1BC2D37設(shè)函數(shù)的定義域為,命題:,的否定是( )A,B,C,D,8半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美二十四等邊
3、體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )ABCD9已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為( )ABCD10已知,則( )ABCD11函數(shù)的圖像大致為( )ABCD12正項等比數(shù)列中,且與的等差中項為4,則的公比是 ( )A1B2CD二、填空題:本題共4小題,每小題5分,共20分。13已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=_14中,角的對邊分別為,且成等差數(shù)列,若,則的面積為_15數(shù)列滿足遞推公式
4、,且,則_.16已知三棱錐的四個頂點在球的球面上,是邊長為2的正三角形,則球的體積為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,求四邊形面積的最大值18(12分)已知,其中(1)當時,設(shè)函數(shù),求函數(shù)的極值(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:19(12分)已知函數(shù),它的導函數(shù)為(1)當時,求的零點;(2)當時,證明:20(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解
5、,求a的取值范圍.21(12分)設(shè)數(shù)列,其前項和,又單調(diào)遞增的等比數(shù)列, , .()求數(shù)列,的通項公式;()若 ,求數(shù)列的前n項和,并求證:.22(10分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現(xiàn)例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細胞是由分裂過程產(chǎn)生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨立的可以把第代的遺傳設(shè)想
6、為第次實驗的結(jié)果,每一次實驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣父系母系各自隨機選擇得到的遺傳因子再配對形成子代的遺傳性狀假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機雜交實驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是稱,分別為父系和母系中遺傳因子和的頻率,實際上是父系和母系中兩個遺傳因子的個數(shù)之比基于以上常識回答以下問題:(1)如果植物的上一代父系母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經(jīng)過實驗觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使
7、得父系和母系中僅有遺傳性狀為和(或)的個體,在進行第一代雜交實驗時,假設(shè)遺傳因子被選中的概率為,被選中的概率為,求雜交所得子代的三種遺傳性狀,(或),所占的比例(3)繼續(xù)對(2)中的植物進行雜交實驗,每次雜交前都需要剔除性狀為的個體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式證明是等差數(shù)列(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機雜交實驗長期進行下去,會有什么現(xiàn)象發(fā)生?參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】解出集合A和B即可求得兩個集合的并集.【
8、詳解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故選:A【點睛】此題考查求集合的并集,關(guān)鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.2D【解析】連接,因為,所以為異面直線與所成的角(或補角),不妨設(shè)正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,因為,所以為異面直線與所成的角(或補角),不妨設(shè)正方體的棱長為2,則,在等腰中,取的中點為,連接,則,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)
9、和二倍角公式,還考查空間思維和計算能力.3A【解析】試題分析:由題意可得:. 共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關(guān)系4B【解析】因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.5D【解析】首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,故選D【點睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于
10、中檔題 解決程序框圖問題時一定注意以下幾點:(1) 不要混淆處理框和輸入框;(2) 注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3) 注意區(qū)分當型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4) 處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5) 要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可6C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,漸近線方程為,求出交點,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;7D【解析】根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以
11、其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.8D【解析】根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.9B【解析】由三視圖可知,該三棱錐如圖, 其中底面是等
12、腰直角三角形,平面,結(jié)合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積; 考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.10B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.11A【解析】根據(jù)排除,利用極限思想進行排除即可【詳解】解:函數(shù)的定義域為
13、,恒成立,排除,當時,當,排除,故選:【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題12D【解析】設(shè)等比數(shù)列的公比為q,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q【詳解】由題意,正項等比數(shù)列中,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負的舍去,故選D【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)等差中項性質(zhì),結(jié)合等
14、比數(shù)列通項公式即可求得公比;代入表達式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運算性質(zhì)可得,故答案為:.【點睛】本題考查了等差數(shù)列通項公式的簡單應(yīng)用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運算,屬于中檔題.14.【解析】由A,B,C成等差數(shù)列得出B60,利用正弦定理得進而得代入三角形的面積公式即可得出【詳解】A,B,C成等差數(shù)列,A+C2B,又A+B+C180,3B180,B60故由正弦定理 ,故 所以SABC,故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題
15、152020【解析】可對左右兩端同乘以得,依次寫出,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題16【解析】由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【點睛】此題考查球的體積,幾何體的外接球,考查空間想象能
16、力,計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2)2.【解析】(1)利用的最小值為1,可得,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個公共點知,即可得到,的關(guān)系式,利用點到直線的距離公式即可得到,當時,設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達式,利用基本不等式的性質(zhì),結(jié)合當時,四邊形是矩形,即可得出的最大值【詳解】(1)設(shè),則,由題意得, 橢圓的方程為;(2)將直線的方程代入橢圓的方程中,得由直線與橢圓僅有一個公共點知,化簡得:設(shè), 當時,設(shè)直線的傾斜角為,則, ,當時,當時,
17、四邊形是矩形,所以四邊形面積的最大值為2【點睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識,考查運算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想18(1)極大值,無極小值;(2)(3)見解析【解析】(1)先求導,根據(jù)導數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導,再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運算性和放縮法即可證明.【詳解】解:(1)當時,設(shè)函數(shù),則令,解得當時,當時,所以在上單調(diào)遞增,在上單調(diào)遞減所以當時,函數(shù)取得極
18、大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立當時,在區(qū)間上恒成立,當時,設(shè),則在區(qū)間上恒成立所以在單調(diào)遞增,則,所以,即綜上所述(3)由(2)可知當時,函數(shù)在區(qū)間上遞增,所以,即,取,則所以所以【點睛】此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.19(1)見解析;(2)證明見解析.【解析】當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調(diào)性,計算即為導函數(shù)的零點;當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明【詳解】(1)的定義域為當時,易知為上的增函數(shù),又,所以是的唯一零點; (2)證明:當時,若
19、,則,所以成立,若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用20(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當時,恒成立,當時,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門美術(shù)聯(lián)考試題及答案
- 日語高考試題及答案
- 酒店中餐宴會擺臺培訓
- 圓明園的毀滅
- 2025年中國噴泉泵行業(yè)市場全景分析及前景機遇研判報告
- ICU臨床思維與病例演練
- 腫瘤科患者便秘預(yù)防與管理
- 偏癱病人的臀部護理
- 綜合外科常規(guī)護理
- 直腸癌術(shù)后的護理
- 2025至2030中國汽車微電機行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025年內(nèi)蒙古能源集團煤電板塊所屬單位招聘筆試參考題庫含答案解析
- 山東省菏澤市2023-2024學年高一下學期7月期末教學質(zhì)量檢測政治試卷(含答案)
- 安全文明施工專項方案及保證措施
- 圓桶養(yǎng)殖水質(zhì)管理制度
- 經(jīng)營管理崗考試題及答案
- T/CI 312-2024風力發(fā)電機組塔架主體用高強鋼焊接性評價方法
- 2025年農(nóng)作物種植技術(shù)員(初級)職業(yè)技能鑒定考試題庫(含答案)
- 2025-2030中國汽車涂料行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 訂房定金協(xié)議書
- 汛期安全教育知識培訓
評論
0/150
提交評論