東北師范大學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
東北師范大學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
東北師范大學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
東北師范大學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
東北師范大學(xué)2021-2022學(xué)年高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1已知命題,那么為( )ABCD2設(shè),若函數(shù)在區(qū)間上有三個零點,則實數(shù)的取值范圍是( )ABCD3某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是ABCD4盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是( )ABCD5對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間110,120內(nèi);乙同學(xué)的數(shù)學(xué)成績與測試次

3、號具有比較明顯的線性相關(guān)性,且為正相關(guān);乙同學(xué)連續(xù)九次測驗成績每一次均有明顯進步其中正確的個數(shù)為()A4B3C2D16定義,已知函數(shù),則函數(shù)的最小值為( )ABCD7若向量,則( )A30B31C32D338在中,角的對邊分別為,若則角的大小為()ABCD9我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實

4、際高度最接近的是( )A400米B480米C520米D600米10等比數(shù)列的前項和為,若,則( )ABCD11為了進一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有( )A12種B24種C36種D48種12已知為正項等比數(shù)列,是它的前項和,若,且與的等差中項為,則的值是( )A29B30C31D32二、填空題:本題共4小題,每小題5分,共20分。13設(shè)函數(shù),則_.14平面區(qū)域的外接圓的方程是_.15已知,若,則a的取值范圍是_16已知過點的直線

5、與函數(shù)的圖象交于、兩點,點在線段上,過作軸的平行線交函數(shù)的圖象于點,當(dāng)軸,點的橫坐標(biāo)是 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cos(+)1(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點M (2,0),若直線l與曲線C相交于P、Q兩點,求的值18(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,求.19(12分)在中,角所對的邊分別是,且.(1)求;(2

6、)若,求.20(12分)已知關(guān)于的不等式有解.(1)求實數(shù)的最大值;(2)若,均為正實數(shù),且滿足.證明:.21(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;(2)求證:對上的任意兩個實數(shù),總有成立.22(10分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O?若存在,求出k的值;若不存在,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】利用特稱命題的否定分析解答得解.【詳解】已知命題,那么是

7、.故選:【點睛】本題主要考查特稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.2D【解析】令,可得.在坐標(biāo)系內(nèi)畫出函數(shù)的圖象(如圖所示).當(dāng)時,.由得.設(shè)過原點的直線與函數(shù)的圖象切于點,則有,解得.所以當(dāng)直線與函數(shù)的圖象切時.又當(dāng)直線經(jīng)過點時,有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個交點時,實數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個零點時,實數(shù)的取值范圍是.選D.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先

8、對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.3B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.4B【解析】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中

9、位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運算的能力,屬于中檔題.5C【解析】利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績的比較,說明正誤即可【詳解】甲同學(xué)的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,錯誤;根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間110,120內(nèi),正確;乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān),正確;乙同學(xué)在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故不正確故選

10、:C【點睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計算能力,屬于基礎(chǔ)題6A【解析】根據(jù)分段函數(shù)的定義得,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,則,(當(dāng)且僅當(dāng),即時“”成立.此時,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.7C【解析】先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標(biāo)運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.8A【解析】由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解

11、的值【詳解】解:,由正弦定理可得:,故選A【點睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題9B【解析】根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.10D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,所以,故解得:,從而公比;那么,故選D考點:等比數(shù)列11C【

12、解析】先將甲、乙兩人看作一個整體,當(dāng)作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.12B【解析】設(shè)正項等比數(shù)列的公比為q,運用等比數(shù)列的通項公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計算即可得到所求【詳解】

13、設(shè)正項等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負(fù)值舍去),則有S5=1故選C【點睛】本題考查等比數(shù)列的通項和求和公式的運用,同時考查等差數(shù)列的性質(zhì),考查運算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】由自變量所在定義域范圍,代入對應(yīng)解析式,再由對數(shù)加減法運算法則與對數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因為函數(shù),則因為,則故故答案為:【點睛】本題考查分段函數(shù)求值,屬于簡單題.14【解析】作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點坐標(biāo),設(shè)三角形的外接圓

14、方程為,將三角形三個頂點坐標(biāo)代入圓的一般方程,求出、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點,同理可得點、,設(shè)的外接圓方程為,由題意可得,解得,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運算求解能力,屬于中等題.15【解析】函數(shù)等價為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍【詳解】,等價為,且時,遞增,時,遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍

15、是故答案為:【點睛】本題考查分段函數(shù)的單調(diào)性的判斷和運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題16【解析】通過設(shè)出A點坐標(biāo),可得C點坐標(biāo),通過軸,可得B點坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點,則,由于軸,故,代入,可得,即,由于在線段上,故,即,解得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)l: ,C方程為 ;(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進行轉(zhuǎn)換(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進一步轉(zhuǎn)換為直線l的極坐標(biāo)方程為cos(

16、+)1,則 轉(zhuǎn)換為直角坐標(biāo)方程為(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應(yīng)的參數(shù)),所以,所以【點睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型18(1);(2)【解析】(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為, 故,.根據(jù)余弦定理:,.【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.19(1)(2)【解析】(1)根據(jù)正弦定

17、理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生的計算能力.20(1);(2)見解析【解析】(1)由題意,只需找到的最大值即可;(2),構(gòu)造并利用基本不等式可得,即.【詳解】(1),的最大值為4.關(guān)于的不等式有解等價于,()當(dāng)時,上述不等式轉(zhuǎn)化為,解得,()當(dāng)時,上述不等式轉(zhuǎn)化為,解得,綜上所述,實數(shù)的取值范圍為,則實數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又,當(dāng)且僅當(dāng)時,等號成立,即,所以,.【點睛】本題考查絕對值不等式中的能成立問題以及綜

18、合法證明不等式問題,是一道中檔題.21(1)(2)見解析【解析】(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),利用導(dǎo)數(shù)說明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1),且函數(shù)在上為減函數(shù),即在上恒成立,在上恒成立.設(shè),函數(shù)在上單調(diào)遞增,實數(shù)的取值范圍為.(2)不妨設(shè),則,.,又,令,在上為減函數(shù),即,在上是減函數(shù),即,當(dāng)時,.,.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導(dǎo)數(shù)證明不等式,考查了推理能力與計算能力,屬于難題22(1);(2)存在,當(dāng)時,以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O.【解析】(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長軸長為1列出方程組求解,推出,即可得到橢圓的方程(2)存在實數(shù)使得以線段為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論