福建省福建師范大學第二2022年高三下學期第六次檢測數(shù)學試卷含解析_第1頁
福建省福建師范大學第二2022年高三下學期第六次檢測數(shù)學試卷含解析_第2頁
福建省福建師范大學第二2022年高三下學期第六次檢測數(shù)學試卷含解析_第3頁
福建省福建師范大學第二2022年高三下學期第六次檢測數(shù)學試卷含解析_第4頁
福建省福建師范大學第二2022年高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1拋物線的焦點為,點是上一點,則( )ABCD2框圖與程序是解決數(shù)學問題的重要手段,實際生活中的一些問題在抽象為數(shù)學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的

2、方差,設計了如圖所示的程序框圖,其中輸入,則圖中空白框中應填入( )A,BC,D,3設,為兩個平面,則的充要條件是A內有無數(shù)條直線與平行B內有兩條相交直線與平行C,平行于同一條直線D,垂直于同一平面4設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為若,則的離心率為( )ABCD5已知函數(shù),其圖象關于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點( )A先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不

3、變D先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變6已知函數(shù),則,的大小關系為( )ABCD7已知集合,則ABCD8已知函數(shù)是偶函數(shù),當時,函數(shù)單調遞減,設,則的大小關系為()ABCD9已知條件,條件直線與直線平行,則是的( )A充要條件B必要不充分條件C充分不必要條件D既不充分也不必要條件10已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是( )ABCD11正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為( )ABCD12已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為

4、( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,垂足為,若在雙曲線上,則雙曲線的離心率為_14在中,則_,的面積為_15數(shù)列的前項和為,數(shù)列的前項和為,滿足,且.若任意,成立,則實數(shù)的取值范圍為_.16曲線ye5x2在點(0,3)處的切線方程為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(

5、2)求曲線上的點到直線距離的最小值和最大值.18(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.19(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,.(1)求證:平面.(2)求二面角的大小.20(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.()求數(shù)列的通項公式;()令.求數(shù)列的前n項和.21(12分)在,角、所對的邊分別為、,已知.(1)求的值;(2)若,邊上的中線,

6、求的面積.22(10分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.2A【解析】依題意問題是,然后按直到型驗證即可.【詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應填入,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.3B【解析】本題考查了空間兩個平面的判定與性質及充要條件,滲透直

7、觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤4B【解析】設過點作的垂線,其方程為,聯(lián)立方程,求得,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,即,由,所以有,化簡得,所以離心率故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運

8、算求解、推理論證能力,屬于中檔題5D【解析】由函數(shù)的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關于直線對稱,得,即,解得,所以,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題6B【解析】可判斷函數(shù)在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質,利用單調性比大小等知識,考查了學生的運算求解能力.7D【解析】因為,所以,故選D8A【解析】根據(jù)圖象關

9、于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據(jù)自變量的大小關系得到函數(shù)值的大小關系.【詳解】為偶函數(shù) 圖象關于軸對稱圖象關于對稱時,單調遞減 時,單調遞增又且 ,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調性比較函數(shù)值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調性,通過自變量的大小關系求得結果.9C【解析】先根據(jù)直線與直線平行確定的值,進而即可確定結果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.10D【解析】易知單調遞增,由可得

10、唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調遞增且有惟一的零點為,所以,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,.故選D【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.11C【解析】分別以直線為軸,直線為軸建立平面直角坐標系,設,根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,則,由,即,得.所以=,所以當時,的最小值為.故選:C.

11、【點睛】本題考查向量的數(shù)量積的坐標表示,屬于基礎題.12D【解析】可設的內切圓的圓心為,設,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值【詳解】可設的內切圓的圓心為,為切點,且為中點,設,則,且有,解得,設,設圓切于點,則,由,解得,所以為等邊三角形,所以,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】由,則,所以點, 因為,可得,點坐標化簡為,代

12、入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以 所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數(shù)形結合的思想,屬于中檔題.14 【解析】利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.15【解析】當時,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調性求解【詳解】解:當時,則,當時,(當且僅當時等號成立),故答

13、案為:【點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題16.【解析】先利用導數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y5e5x,所以切線的斜率k5e05,所以切線方程是:y35(x0),即y5x3.故答案為y5x3.【點睛】(1)本題主要考查導數(shù)的幾何意義和函數(shù)的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2) 函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,相應的切線方程是三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)最大值;最小值.【解析】(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結合三角函

14、數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側重考查數(shù)學運算的核心素養(yǎng).18(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設,則 ,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標方程可化為.把,代入曲線的

15、極坐標方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.曲線與直線相交于不同的兩點,又,.又,.,.的取值范圍是.點睛:(1)直線的參數(shù)方程有多種形式,其中一種為(為直線的傾斜角, 是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示 之間的距離.(2)直角坐標方程轉為極坐標方程的關鍵是利用公式,而極坐標方程轉化為直角坐標方程的關鍵是利用公式,后者也可以把極坐標方程變形盡量產(chǎn)生以便轉化.19(1)見解析;(2)【解析】(1)根據(jù)面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各

16、個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:平面平面ABEG,且,平面,由題意可得,且,平面.(2)如圖所示,建立空間直角坐標系,則,.設平面的法向量是,則,令,由(1)可知平面的法向量是,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質應用,空間向量法求二面角的大小,屬于中檔題.20();()【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項和.試題解

17、析:(1)由題意知當時,當時,所以設數(shù)列的公差為,由,即,可解得,所以(2)由(1)知,又,得,兩式作差,得所以考點 1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用“錯位相減法”求數(shù)列的前項和.【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用“錯位相減法”求數(shù)列的前項和,屬于難題. “錯位相減法”求數(shù)列的前項和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);相減時注意最后一項 的符號;求和時注意項數(shù)別出錯;最后結果一定不能忘記等式兩邊同時除以.21 (1) (2)答案不唯一,見解析【解析】(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論