數(shù)學(xué)課件:《何時(shí)獲得最大利潤(rùn)》二次函數(shù)PPT課件5_第1頁(yè)
數(shù)學(xué)課件:《何時(shí)獲得最大利潤(rùn)》二次函數(shù)PPT課件5_第2頁(yè)
數(shù)學(xué)課件:《何時(shí)獲得最大利潤(rùn)》二次函數(shù)PPT課件5_第3頁(yè)
數(shù)學(xué)課件:《何時(shí)獲得最大利潤(rùn)》二次函數(shù)PPT課件5_第4頁(yè)
數(shù)學(xué)課件:《何時(shí)獲得最大利潤(rùn)》二次函數(shù)PPT課件5_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2.6 何時(shí)獲得最大利潤(rùn)北師大版 九年級(jí)數(shù)學(xué)下冊(cè) 2 . 二次函數(shù)y=ax2+bx+c的圖象是一條 ,它的對(duì)稱(chēng)軸是 ,頂點(diǎn)坐標(biāo)是 . 當(dāng)a0時(shí),拋物線(xiàn)開(kāi)口向 ,有最 點(diǎn),函數(shù)有最 值,是 ;當(dāng) a0時(shí),拋物線(xiàn)開(kāi)口向 ,有最 點(diǎn),函數(shù)有最 值,是 。拋物線(xiàn)回味無(wú)窮上小下大高低 1. 二次函數(shù)y=a(x-h)2+k的圖象是一條 ,它的對(duì)稱(chēng)軸是 ,頂點(diǎn)坐標(biāo)是 .拋物線(xiàn)直線(xiàn)x=h(h,k) 3. 二次函數(shù)y=2(x-3)2+5的對(duì)稱(chēng)軸是 ,頂點(diǎn)坐標(biāo)是 。當(dāng)x= 時(shí),y的最 值是 。 4. 二次函數(shù)y=-3(x+4)2-1的對(duì)稱(chēng)軸是 ,頂點(diǎn)坐標(biāo)是 。當(dāng)x= 時(shí),函數(shù)有最 值,是 。 5.二次函數(shù)y=2x

2、2-8x+9的對(duì)稱(chēng)軸是 ,頂點(diǎn)坐標(biāo)是 .當(dāng)x= 時(shí),函數(shù)有最 值,是 ?;匚稛o(wú)窮直線(xiàn)x=3(3 ,5)3小5直線(xiàn)x=-4(-4 ,-1)-4大-1直線(xiàn)x=2(2 ,1)2小1 2.6 何時(shí)獲得最大利潤(rùn) 某大型商場(chǎng)的楊總到 T恤衫部去視察,了解的情況如下:已知成批購(gòu)進(jìn)時(shí)單價(jià)是20元根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量與銷(xiāo)售單價(jià)滿(mǎn)足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是35元時(shí),銷(xiāo)售量是600件,而單價(jià)每降低1元,就可以多銷(xiāo)售200件于是楊總給該部門(mén)王經(jīng)理下達(dá)一個(gè)任務(wù),馬上制定出獲利最多的銷(xiāo)售方案,這可把王經(jīng)理給難住了?你能幫他解決這個(gè)問(wèn)題嗎?王經(jīng)理的困惑:怎樣獲利更多?王經(jīng)理經(jīng)營(yíng)T恤衫,購(gòu)進(jìn)時(shí)單價(jià)是20元。市場(chǎng)調(diào)查發(fā)現(xiàn)

3、:在一段時(shí)間內(nèi),單價(jià)是35元時(shí),銷(xiāo)售量是600件;而單價(jià)每降低1元,就可以多售出200件。王經(jīng)理想知道:1、價(jià)格下降,銷(xiāo)量增加,總利潤(rùn)是增加還是減少?2、降價(jià)多少時(shí),可以獲得最大利潤(rùn)?王經(jīng)理的嘗試:總利潤(rùn)單件利潤(rùn)銷(xiāo)售量降價(jià)售價(jià)單件利潤(rùn)銷(xiāo)售量總利潤(rùn)0元1元2元3元4元35351352353354352015351 2014352 2013353 2012354 2011600600200600200260020036002004750011200130001440015400令王經(jīng)理非常開(kāi)心的結(jié)論:Yes! 價(jià)格下降,銷(xiāo)量增加,總利潤(rùn)不斷增加! 某大型商場(chǎng)經(jīng)營(yíng) T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是20元

4、根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量與銷(xiāo)售單價(jià)滿(mǎn)足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是35元時(shí),銷(xiāo)售量是600件,而單價(jià)每降低1元,就可以多銷(xiāo)售200件請(qǐng)問(wèn):銷(xiāo)售單價(jià)是多少元時(shí),可以獲利最大?最大利潤(rùn)為多少?(單價(jià)取整數(shù))如果設(shè)銷(xiāo)售單價(jià)為x元,(20 x35的整數(shù)) 獲得的利潤(rùn)為y元 探究每件降價(jià)_ 元35- x銷(xiāo)售量可以表示_ _ 件600+200( 35- x ) 每件利潤(rùn)_元x -20獲得的總利潤(rùn)y=_ ( x -20 )600+200( 35- x )=-200 x2+11600 x-152000= -200(x-29)2 +16200y = -200 x2+11600 x-152000( 20 x35的整

5、數(shù))你能畫(huà)出該函數(shù)的圖象嗎?= -200(x-29)2 +16200 x 27 28 29 30 31 y1540016000162001600015400O27282930 x /元154001560015800160001620016400 y/元31若要求總利潤(rùn)不低于15400元,那么可以制定哪幾種價(jià)格?活動(dòng)探究1構(gòu)建二次函數(shù)模型:將問(wèn)題轉(zhuǎn)化為二次函數(shù)的一個(gè)具體的表達(dá)式.求二次函數(shù)的最大(或最小值)運(yùn)用函數(shù)來(lái)決策定價(jià)的問(wèn)題: 總結(jié) :我們還曾經(jīng)利用列表的方法得到一個(gè)數(shù)據(jù),現(xiàn)在請(qǐng)你驗(yàn)證一下你的猜測(cè)(增種多少棵橙子樹(shù)時(shí),總產(chǎn)量最大?)是否正確.與同伴進(jìn)行交流你是怎么做的.還記得本章一開(kāi)始涉及

6、的“種多少棵橙子樹(shù)”的問(wèn)題嗎?活動(dòng)探究2等量關(guān)系:橙子的總產(chǎn)量=每棵橙子樹(shù)的產(chǎn)量橙子樹(shù)的數(shù)量議一議某果園有100棵橙子樹(shù),每一棵樹(shù)平均結(jié)600個(gè)橙子.現(xiàn)準(zhǔn)備多種一些橙子樹(shù)以提高產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每一棵樹(shù)所接受的陽(yáng)光就會(huì)減少.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一棵樹(shù),平均每棵樹(shù)就會(huì)少結(jié)5個(gè)橙子.問(wèn)增種多少棵橙子樹(shù),可以使橙子的總產(chǎn)量最多?y=(100+x)(600-5x) = 5x2+100 x+60000 =-5(x-10)2+60500a0 y有最大值挑戰(zhàn)新高2. 利用函數(shù)圖象描述橙子的總產(chǎn)量y與增種橙子樹(shù)的棵數(shù)x之間的關(guān)系.當(dāng)x10時(shí),橙子的總產(chǎn)量隨增種棵樹(shù)的增加而增加;當(dāng)x10時(shí)

7、,橙子的總產(chǎn)量隨增種棵樹(shù)的增加而減少.當(dāng)x=10時(shí),橙子的總產(chǎn)量最大.O5101520 x/棵60000601006020060300604006050060600y/個(gè)增種多少棵橙子樹(shù),可以使橙子的總產(chǎn)量在60400個(gè)以上?x1=10-2 , x2=10+2 增種6、7、8、9、10、11、12、13或14棵橙子樹(shù),都可以使橙子的總產(chǎn)量在60400個(gè)以上.x1x2歸納小結(jié):運(yùn)用二次函數(shù)的性質(zhì)求實(shí)際問(wèn)題的最大值和最小值的一般步驟 :求出函數(shù)解析式和自變量的取值范圍配方變形,或利用公式求它的最大值或最小值。檢查求得的最大值或最小值對(duì)應(yīng)的自變量的值必須在自變量的取值范圍內(nèi) 。隨堂練習(xí)某商店購(gòu)進(jìn)一批

8、單價(jià)為20元的日用品,如果以單價(jià)30元銷(xiāo)售,那么半個(gè)月內(nèi)可以售出400件.根據(jù)銷(xiāo)售經(jīng)驗(yàn),提高單價(jià)會(huì)導(dǎo)致銷(xiāo)售量的減少,即銷(xiāo)售單價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少20件.如何提高售價(jià),才能在半個(gè)月內(nèi)獲得最大利潤(rùn)?解: 假設(shè)銷(xiāo)售單價(jià)為x(x30)元,銷(xiāo)售利潤(rùn)為y元,則 y = (x-20) 400-20(x-30) = -20 x2+140 x-20000 = -20(x-35)2+4500 當(dāng)x=35時(shí),y有最大值為4500. 35-30=5(元)答:當(dāng)銷(xiāo)售單價(jià)提高5元,即單價(jià)為35元時(shí), 可以在半月內(nèi)獲得最大利潤(rùn)4500元.若規(guī)定銷(xiāo)售單價(jià)不得高于33元,則如何提高售價(jià),可在半月內(nèi)獲得最大利潤(rùn)?隨堂練習(xí)

9、某商店購(gòu)進(jìn)一批單價(jià)為20元的日用品,如果以單價(jià)30元銷(xiāo)售,那么半個(gè)月內(nèi)可以售出400件.根據(jù)銷(xiāo)售經(jīng)驗(yàn),提高單價(jià)會(huì)導(dǎo)致銷(xiāo)售量的減少,即銷(xiāo)售單價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少20件.如何提高售價(jià),才能在半個(gè)月內(nèi)獲得最大利潤(rùn)?解: 假設(shè)銷(xiāo)售單價(jià)為x(x30)元,銷(xiāo)售利潤(rùn)為y元,則 y= -20(x-35)2+4500若規(guī)定銷(xiāo)售單價(jià)不得高于33元,則如何提高售價(jià),可在半月內(nèi)獲得最大利潤(rùn)?0333544204500Xy拓展某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣(mài)出300件市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格,每漲價(jià)1元,每星期要少賣(mài)出10件;每降價(jià)1元,每星期可多賣(mài)出18件,已知商品的進(jìn)價(jià)為每件40元,如何定價(jià)才能使

10、利潤(rùn)最大?分析:調(diào)整價(jià)格包括漲價(jià)和降價(jià)兩種情況,我們先來(lái)看漲價(jià)的情況即y = (60 x)(30010 x) 40 (30010 x)(1)設(shè)每件漲價(jià)x元,則每星期賣(mài)出(30010 x)件,單件商品的利潤(rùn)為(60+x 40)元y = 10 x2+100 x+6000怎樣確定x的取值范圍?其中,0 x30.(0X30) 當(dāng)x = _時(shí),y最大,也就是說(shuō),在漲價(jià)的情況下,漲價(jià)_元,即定價(jià)_元時(shí),利潤(rùn)最大,最大利潤(rùn)是_. 5 5 65 6250噴泉與二次函數(shù)例3:龍城公園要建造圓形噴水池.在水池中央垂直于水面處安裝一個(gè)柱子OA,O恰在水面中心,OA=1.25m.由柱子頂端A處的噴頭向外噴水,水流在各

11、個(gè)方向沿形狀相同的拋物線(xiàn)落下,為使水流形狀較為漂亮,要求設(shè)計(jì)成水流在離OA距離為1m處達(dá)到最大高度2.25m.(1)如果不計(jì)其它因素,那么水池的半徑至少要多少m,才能使噴出的水流不致落到池外?(2)若水流噴出的拋物線(xiàn)形狀與(1)相同,水池的半徑為3.5m,要使水流不落到池外,此時(shí)水流的最大高度應(yīng)達(dá)到多少m(精確0.1m)?解:(1)如圖,建立如圖所示的坐標(biāo)系,根據(jù) 題意得,A(0,1.25),頂點(diǎn)B(1,2.25).當(dāng)y=0時(shí),得點(diǎn)C(2.5,0);同理,點(diǎn)D(-2.5,0).根據(jù)對(duì)稱(chēng)性,那么水池的半徑至少要2.5m,才能使噴出的水流不致落到池外.設(shè)拋物線(xiàn)為y=a(x-1)2+2.25,由待定

12、系數(shù)法可求得拋物線(xiàn)表達(dá)式為:y=-(x-1)2+2.25.數(shù)學(xué)化xyOAB(1,2.25)(0,1.25) C(2.5,0)D(-2.5,0)由此可知,如果不計(jì)其它因素,那么水流的最大高度應(yīng)達(dá)到約3.72m.解:(2)根據(jù)題意得,A(0,1.25),C(3.5,0).設(shè)拋物線(xiàn)為y=-(x-h)2+k,由待定系數(shù)法求得拋物線(xiàn)為:y=-(x-11/7)2+729/196.數(shù)學(xué)化xyOAB(0,1.25) C(3.5,0)D(-3.5,0)B(1.57,3.72)例4:一塊鐵皮零件,它形狀是由邊長(zhǎng)為40厘米正方形CDEF截去一個(gè)三角形ABF所得的五邊形ABCDE,AF=12厘米,BF=10厘米,現(xiàn)要截取矩形鐵皮,使得矩形相鄰兩邊在CD、DE上.請(qǐng)問(wèn)如何截取,可以使得到的矩形面積最大?解:在AB上取一點(diǎn)P,過(guò)點(diǎn)P作CD、DE的垂線(xiàn),得矩形PNDM。延長(zhǎng)NP、MP分別與EF、CF 交于Q、S.設(shè)PQ=x厘米(0 x10), 那么PN=40-x。由APQABF

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論