2023屆高考數(shù)學(xué)一輪復(fù)習(xí)計(jì)劃 高考新題型(四) 閱讀理解題的特點(diǎn)及求解策略(Word學(xué)案)_第1頁(yè)
2023屆高考數(shù)學(xué)一輪復(fù)習(xí)計(jì)劃 高考新題型(四) 閱讀理解題的特點(diǎn)及求解策略(Word學(xué)案)_第2頁(yè)
2023屆高考數(shù)學(xué)一輪復(fù)習(xí)計(jì)劃 高考新題型(四) 閱讀理解題的特點(diǎn)及求解策略(Word學(xué)案)_第3頁(yè)
2023屆高考數(shù)學(xué)一輪復(fù)習(xí)計(jì)劃 高考新題型(四) 閱讀理解題的特點(diǎn)及求解策略(Word學(xué)案)_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、題型(四)閱讀理解題的特點(diǎn)及求解策略閱讀理解題通過(guò)給出一個(gè)新概念,或定義一種新運(yùn)算,或給出新的問(wèn)題情境,要求在讀懂題目的基礎(chǔ)上,將新舊知識(shí)相聯(lián)系,剖開(kāi)現(xiàn)象看本質(zhì),實(shí)現(xiàn)新信息向已學(xué)的知識(shí)和方法遷移,達(dá)到創(chuàng)新解題的目的這類問(wèn)題既能考查學(xué)生的閱讀理解能力和數(shù)學(xué)語(yǔ)言轉(zhuǎn)換能力,又能考查學(xué)生的探究能力一、新概念題(多選)(2021新高考卷)設(shè)正整數(shù)na020a12ak12k1ak2k,其中ai0,1,記(n)a0a1ak則()A(2n)(n)B(2n3)(n)1C(8n5)(4n3)D(2n1)n解析由na020a12ak12k1ak2k,則2n020a021a122ak12kak2k1,(2n)0a0a

2、1ak(n),A正確選項(xiàng)B,取n2可排除或者(2n3)2(n1)12(n1)1(n1)1,不能保證與(n)1恒等B錯(cuò)誤選項(xiàng)C,(8n5)(8n41)(8n4)1(2n1)1(2n)2(n)2;(4n3)(4n2)1(2n1)1(n)2C正確選項(xiàng)D,2n12021222n1,(2n1)n或者,當(dāng)n2時(shí),(2n11)2(2n1)12(2n1)1(2n1)1又(3)2,(1)1,(3)(1)1即對(duì)nN*有(2n11)(2n1)1,(2n1)為首項(xiàng)為1,公差為1的等差數(shù)列(2n1)nD正確故選A、C、D答案ACD點(diǎn)評(píng)新概念類試題是指在現(xiàn)有的知識(shí)基礎(chǔ)上定義一種新的概念或新運(yùn)算或規(guī)則或性質(zhì)等,在此情境下設(shè)

3、置的新問(wèn)題此類試題是典型的信息遷移題,解決該類問(wèn)題的關(guān)鍵是提升學(xué)生的閱讀理解能力、獲取信息能力、處理信息能力以及挖掘新規(guī)則內(nèi)涵,準(zhǔn)確找出新特點(diǎn)的能力二、新情境題(2020新高考卷)日晷是中國(guó)古代用來(lái)測(cè)定時(shí)間的儀器,利用與晷面垂直的晷針投射到晷面的影子來(lái)測(cè)定時(shí)間把地球看成一個(gè)球(球心記為O),地球上一點(diǎn)A的緯度是指OA與地球赤道所在平面所成角,點(diǎn)A處的水平面是指過(guò)點(diǎn)A且與OA垂直的平面在點(diǎn)A處放置一個(gè)日晷,若晷面與赤道所在平面平行,點(diǎn)A處的緯度為北緯40,則晷針與點(diǎn)A處的水平面所成角為()A20B40C50D90解析過(guò)球心O、點(diǎn)A以及晷針的軸截面如圖所示,其中CD為晷面,GF為晷針?biāo)谥本€,EF

4、為點(diǎn)A處的水平面,GFCD,CDOB,AOB40,OAEOAF90,所以GFACAOAOB40故選B答案B點(diǎn)評(píng)新高考試題情境多以現(xiàn)代科學(xué)技術(shù)、現(xiàn)實(shí)生活、學(xué)科間的交匯、社會(huì)熱點(diǎn)等為背景創(chuàng)設(shè),旨在突出新時(shí)代教育總方針立德樹(shù)人正確解答這類問(wèn)題的關(guān)鍵是認(rèn)真閱讀理解題意,快速準(zhǔn)確的獲取信息,理性思維,排除題目背景中的干擾因素,抓住關(guān)鍵信息,實(shí)現(xiàn)數(shù)學(xué)思想、方法、能力的遷移運(yùn)用三、材料題閱讀下面材料:sin 3sin(2)sin 2cos cos 2sin 2sin cos2(12sin2)sin 2sin (1sin2)(sin 2sin3)3sin 4sin3解答下列問(wèn)題:(1)證明:cos 34cos

5、33cos ;(2)若函數(shù)f(x)eq f(cosblc(rc)(avs4alco1(3xf(,4),cosblc(rc)(avs4alco1(xf(,4)msineq blc(rc)(avs4alco1(xf(,4)5在xeq blc(rc)(avs4alco1(0,f(,2)內(nèi)有零點(diǎn),求實(shí)數(shù)m的取值范圍解(1)證明:cos 3cos(2)cos 2cos sin 2sin (2cos21)cos 2sin2cos 2cos3cos 2(1cos2)cos 4cos33cos ,即cos 34cos33cos (2)化簡(jiǎn)函數(shù)f(x)解析式的思路主要有兩種:一是直接展開(kāi)為單角的三角函數(shù)進(jìn)行化簡(jiǎn)

6、,這種方法較為煩瑣其中eq f(cosblc(rc)(avs4alco1(3xf(,4),cosblc(rc)(avs4alco1(xf(,4)eq f(cos 3xsin 3x,cos xsin x)eq f(4cos3xsin3x3cos xsin x,cos xsin x)4(cos2xcos xsin xsin2x)314sin xcos x;二是觀察角之間的關(guān)系,利用角的變換進(jìn)行化簡(jiǎn),過(guò)程較為簡(jiǎn)便其中令xeq f(,4),則eq f(cosblc(rc)(avs4alco1(3xf(,4),cosblc(rc)(avs4alco1(xf(,4)eq f(cos 3,cos )eq f

7、(3cos 4cos3,cos )34cos2再令tcos ,則原函數(shù)可化為y4t2mt2eq blc(rc)(avs4alco1(f(r(2),2)0,故有eq blcrc (avs4alco1(gblc(rc)(avs4alco1(f(r(2),2)0,,g10)或eq blcrc (avs4alco1(0,,f(r(2),2)f(m,8)1,,g10,)解得4eq r(2)m6;二是運(yùn)用函數(shù)思想,分離參數(shù)m,轉(zhuǎn)化為m在函數(shù)h(t)4teq f(2,t),teq blc(rc(avs4alco1(f(r(2),2),1)的值域內(nèi)利用函數(shù)單調(diào)性的定義可以證明函數(shù)h(t)4teq f(2,t)

8、在teq blc(rc(avs4alco1(f(r(2),2),1)內(nèi)單調(diào)遞增,從而函數(shù)g(t)的值域?yàn)?4eq r(2),6,所以實(shí)數(shù)m的取值范圍是(4eq r(2),6點(diǎn)評(píng)此類問(wèn)題的求解策略是能夠在熟悉的情境中,用歸納或類比的方法,發(fā)現(xiàn)數(shù)量或圖形的性質(zhì)、數(shù)量關(guān)系或圖形關(guān)系;了解熟悉的數(shù)學(xué)命題的條件與結(jié)論之間的邏輯關(guān)系;掌握一些基本命題與定理的證明,并有條理地表述論證過(guò)程1將正整數(shù)20分解成兩個(gè)正整數(shù)的乘積有120,210,45三種,其中45是這三種分解中兩數(shù)差的絕對(duì)值最小的,我們稱45為20的最佳分解當(dāng)pq(pq且p,qN*)是正整數(shù)n的最佳分解時(shí),定義函數(shù)f(n)qp,則數(shù)列f(3n)(

9、nN*)的前2 020項(xiàng)和為()A31 0101Beq f(31 0001,4)Ceq f(31 0101,2)D31 0101解析:D由最佳分解的定義,得當(dāng)n為偶數(shù)時(shí),f(3n)3eq f(n,2)3eq f(n,2)0;當(dāng)n為奇數(shù)時(shí),f(3n)3eq f(n1,2)3eq f(n1,2)23eq f(n1,2)所以數(shù)列f(3n)的前2 020項(xiàng)和S2 0202(30313231 009)2eq f(31 0101,31)31 0101,故選D2北京大興國(guó)際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用刻畫(huà)空間的彎曲性是幾何研究的重要內(nèi)容用曲率刻畫(huà)空間彎曲性,規(guī)定:多面體頂點(diǎn)的曲率等于2與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和例如:正四面體在每個(gè)頂點(diǎn)有3個(gè)面角,每個(gè)面角是eq f(,3),所以正四面體在各頂點(diǎn)的曲率為23eq f(,3),故其總曲率為4(1)求四棱錐的總曲率;(2)若多面體滿足:頂點(diǎn)數(shù)棱數(shù)面數(shù)2,證明:這類多面體的總曲率是常數(shù)解:(1)由定義多面體總曲率2頂點(diǎn)數(shù)各面內(nèi)角和,而四棱錐有5個(gè)頂點(diǎn),5個(gè)面,分別為4個(gè)三角形和1個(gè)四邊形,所以四棱錐的總曲率25(421)4(2)證明:設(shè)多面體有m個(gè)頂點(diǎn),k個(gè)面,每個(gè)面有ai條棱(i1,2,k),則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論