參考案例講稿optics-chap_第1頁
參考案例講稿optics-chap_第2頁
參考案例講稿optics-chap_第3頁
參考案例講稿optics-chap_第4頁
參考案例講稿optics-chap_第5頁
已閱讀5頁,還剩59頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Chapter 7 InterferenceConditions for interferenceWavefront-splitting interferometersYoungs experimentFresnels double mirror & biprismLloyds mirrorAmplitude-splitting interferometersDielectric filmsMichelson interferometerMach-Zender interferometerSagnac interferometerMultiple beam interference: Fabr

2、y-Perot interferometerSingle & multilayer filmsApplicationsInterference is a kind of rearrangement of energy.General considerationConstructive interference-/2 /2Total constructive interference = 0 2mDestructive interference/2 3/2Total destructive interference = 2mInterference fringes of two point so

3、urcesSpherical wavesIf 1 = 2Max:(r1 - r2) = mMin:(r1 - r2) = m/2Conditions for interferencePolarizationTemporal coherence is a manifestation of spectral purity.Spatial coherenceStable fringes: very nearly the same frequencyClearest fringes: equal or nearly equal amplitude Fresnel-Arago lawsTwo ortho

4、gonal, coherent linear-polarized states cannot interfer.Two parallel, coherent linear-polarized states will interfer.The two constituent orthogonal linear-polarized states of natural light cannot interfer to form a readily observable fringe pattern even if rotated ibto alignment, since these states

5、are incoherent.Interference of independent photon beams“ each photon interferes only with itself. Interference between different photons never occurs.”Principles of Quantum Mechanics, by P.A.M. DiracPfleegor & MandelPhysical Review1967Experimental resultsWavefront-SplittingInterferometersOriginal Yo

6、ungs experimentSpatial coherent,but not temporal coherentDue to symmetry, the primary wavefront arriving at the two slits will be exactly in-phase, and the slits will constitute two coherent secondary sources. Whatever the two waves coming from S1 and S2 overlap, interference will occur (because OPD

7、 coherence length). Analysis ofYoungs experimentFringes pattern of Youngs experimentFresnels double mirrorFresnels double prismLloyds mirrorExample:Using Lloyds mirror, X-ray fringes were observed, the spacing of which was found to be 0.0025 cm. The wavelength used was 8.33 . If the source-screen di

8、stance was 3 m, how high above the mirror plane was the point source of X-ray placed?Light Receiving Fiber123Light Emitting FiberSampleFiber optic equivalent of Lloyds mirrorPropagation of a Gaussian beamE0 : electric field at the original point (x,y,z) = (0,0,0)w0 : beam radius at z=0, w : beam rad

9、ius at zk : wavevector of EM waveR : curvature of wavefrontz0 : Rayleigh range of Gaussian beam Direct- propagation lightRreflected light by the sample surfaceTwo-beam interferometry by splitting wavefrontThe unit of intensity is L2/(E02z02). s-polarization light, =650 nm, z0=75 m, w0=4 m,h=200 m, L

10、=7 mm,n=3.85+0.016i (bare silicon surface)Fringe pattern at the observation plane z = Ls-polarization light, observation plane at z = 7mm(A) = 650nm, n = 3.85+0.016i (bare silicon surface)(B) = 1550nm, n = 3.47 (bare silicon surface)h = 100 mh = 200 mh = 300 m(A)(B)Fringes pattern obtained at differ

11、ent gap distanceAmplitude-SplittingInterferometersDielectric films double-beam interferenceAssumptions:Reflections at the interface are so low that only the first two reflected beams need be considered.The OPL between these two beams is less than the coherence length of the light source.Fringes of e

12、qual inclinationAll rays inclined at the same angle arrive at the same point.Finite aperture & extended sourceHaidinger fringesWhen d is large, the separation between two reflected rays is also large. Then focusing lens is necessary for forming interference fringes.Fringes of equal thicknessEach fri

13、nge is the locus of points in the filmfor which the optical thickness is a constant.i and are small.(nf n1 & nf n1 & nf n2)A wedge-shaped film made of liquid dishwashing soapNewtons ringsThe diameter of the rings vary with m1/2 .(compare with Haidingers fringes)Pictures of Newtons ringsMichelson int

14、erferometerRearrangement of the Michelson interferometerMin. (dark fringes): 2d cosm = m0Michelsons interferometer & displacement measurementMin. (dark fringes): 2d cosm = m0d cosm m Fringes are shrinking toward the center.m = 0, 2d = m00dm - dm-1 = /2 One swept fringe corresponds to a displacement

15、of /2.Mach-Zehnder interferometerScylla IV for studying plasmaSagnac interferometerTypes & localization of interference fringesReal (w/o focusing lens) vs. virtual (w focusing lens)Nonlocalized fringes are real and exist everywhere within an extended region.Localized fringes are observable only over

16、 a particular surface. Real, localizedReal, nonlocalizedRealVirtualMultiple BeamInterferenceGeneral considerationsThe film is nonabsorbing, and n1 = n2.The rays nearly parallel, the scalar theory will suffice.Treatments on reflected beamsTreatments on transmitted beamsViewpoint of conservation of en

17、ergyTwo special casesCase ICase IICoefficient of finesse FAiry functionA (i, r, d, nf)Fabry-Perot interferometerEnclosed gap d is ranging from a few mm km.Used as a laser resonant cavity, also for laser frequency stabilization, phase locking, spectroscopy, etc.Longest Fabry-Perot interferometerin th

18、e worldSignal of Fabry-Perot etalon with absorptionPartially transparent films coated on Fabry-Perot etalon will absorb a fraction A of the energy flux density. T+R+A=150-nm silver film:R=0.94, T=0.01, A=0.05 dropped by 1/36Finesse of Fabry-Perot etalonFabry-Perot SpectroscopyResolving power & free

19、spectral rangeChromaticresolving powerMin. resolvablebandwidthFree spectralrangeApplications ofSingle & Multilayer FilmsFields at the boundary of monolayer film (I)dn1nsn0Fields at the boundary of monolayer film (II)dn1nsn0Fields at the boundary of monolayer film (III)When E / plane-of-incidenceWhen E plane-of-incidenceFields at the boundary of monolayer film (I)dn1nsn0Fields at the boundary of monolayer film (VI)When E / plane-of-inci

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論