版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 # LectureNotesofBus41202(Spring2013)AnalysisofFinancialTimeSeriesRueyS.TsaySimpleARmodels:(Regressionwithlaggedvariables.)Motivatingexample:ThegrowthrateofU.S.quarterlyrealGNPfrom1947to1991.Recallthatthemodeldiscussedbeforeisrt=0.005+0.35r/_i+0.18心_20.14幾_3+%aa=0.01.ThisiscalledanAR(3)modelbecauset
2、hegrowthrate門dependsonthegrowthratesofthepastthreequarters.Howdowespecifythismodelfromthedata?Isitadequateforthedata?Whataretheimplicationsofthemodel?Thesearethequestionsweshalladdressinthislecture.Anotherexample:U.S.monthlyunemploymentrate.AR(1)model:Form:幾=+01門_1+%where0and機arerealnumbers,whichare
3、referredtoasparameters(tobeestimatedfromthedatainanapplication).Forexample,rt=0.005+0.2n_i+atStationarity:necessaryandsufficientcondition|0i|2.Stochasticbusinesscycle:if+4020,then幾showschar-ncteristicsofbusinesscycleswithaveragelength.27Twherethecosineinverseisstatedinradian.Ifwedenotethesolutionsof
4、thepolynomialasbi,wherei=/T5thenwehave0i=2aand02=(以+以)sothat27TInRorS-Plus,onecanobtain/a2+b2usingthecommandMod.Forecasts:SimilartoAR(1)modelsSimulationinR:Usethecommandarima.simyl=arimasim(model=list(ar=c(13,一.4),1000)y2=arimasim(model=list(ar=c(8,一.7),1000)ChecktheACFandPACFoftheabovetwosimulateds
5、eries.Discussion:(Referenceonly)AnAR(2)modelcanbewrittenasanAR(1)modelifoneexpandsthedimension.Specifically,wehave4=0i(n_i“)+血(幾2“)+心rt-i=rt-i4(anidentity.)Now,puttingthetwoequationstogether,wehave幾一“.n-i一“010210rt-i-“atThisisa2-dimensionalAR(1)model.SeveralpropertiesoftheAR(2)modelcanbeobtainedfrom
6、theexpandedAR(1)model.BuildinganARmodelOrderspecificationPartialACF:(naive,buteffective)UseconsecutivefittingsSeeText(p.40)fordetailsKeyfeature:PACFcutsoffatlagpforanAR(p)model.Illustration:SeethePACFoftheU.S.quarterlygrowthrateofGNP.Akaikeinformationcriterion2/4W)=ln()+foranAR()model,where進istheMLE
7、ofresidualvariance.FindtheARorderwithminimumAICfor60,P.BICcriterion:BIC)=ln&)+轡1Series:dgnpcooCMoLLonames(ml)1rder116Hn.used1111series*11ar11order.max”frequency11Hvar.pred1x-mean11aic11Hpartialacf11resid11methodcallasy.var.coefplot(ml$resid,type=;1;)%Plotresidualsofthefittedmodel(notshown)Box.test(m
8、l$resid,lag=10,type=;Ljungy)%ModelcheckingBox-Ljungtestdata:ml$residX-squared=7.0808,df=10,p-value=0.7178m2=arima(x,order=c(3,0,0)%Anotherapproachwithordergiven.m2Call:Coefficients:arlar2ar3034800.1793-0.1423s.e.0.07450.077800745arima(x=x,order=c(3,0,0)intercept%Fittedmodelis0.0077%y(t)=0.348y(t-1)+
9、0.179y(t-2)0.0012%-0142y(t-3)+a(t),%wherey(t)=x(t)-0.0077sigma*2estimatedas9427e-05:loglikelihood=565.84,aic=-1121.68names(m2)1Hcoef”sigma2var.coef11maskloglik11aic117,armaresiduals11call11series11code11Hn.condH13modelBoxtest(m2$residuals,lag=10,type=Ljung)Box-Ljungtestdata:m2$residualsX-squared=7.0
10、169,df=10,p-value=0.7239plot(m2$residuals,type=J1J)%Residualplottsdiag(m2)%obtain3plotsofmodelchecking(notshowninhandout)pl=c(l,-m2$coef1:3)%Furtheranalysisofthefittedmodelroots=polyroot(pl)roots11.590253+1.063882e+00i-1.920152-3530887e-17i1.590253-1.063882e+00iMod(roots)11.9133081.9201521.913308k=2
11、*pi/acos(1.590253/1.913308)k110.65638predict(m2,8)%Predictionl-stepto8-stepahead$predTimeSeries:Start=177End=184Frequency=110.0012362540.0045555190.0074549060.00795851850.0081814420.0079368450.0078200460.007703826$seTimeSeries:Start=177End=184Frequency=110.0097093220.0102805100.0106863050.0106889945
12、0.0106897330.0106947710.0106955110.010696190Anotherexample:IVIonthlyUSunemploymentTatefromJanuary1948toFebruary2013.Demonstration:inclass,includingtheRscriptsfore,foreplot:andbacktest.require(quantmod)getSymbols(NRATE,src=,FREDu)rate=as.numeric(UNRATE$UNRATE)unrate=ts(rate,frequency=12,start=c(1948,
13、1)plot(unrate)head(UNRATE)UNRATE1948-01-013.41948-02-013.81948-06-013.6acf(rate)acf(diff(rate)par(mfcol=c(2,l)acf(rate)acf(diff(rate)ml=ar(diff(rate),method=Hmleu)varp:redHpartialacfncallx.mean11aic11resid11method11asy.var.coef11names(ml)1,ordernar6Hnused11order.max111series1frequencyml$order112ml=a
14、rima(rate,order=c(12,1,0)mlCall:Coefficients:arlar2ar3ar4ar5ar6ar7ar8ar90.02330.21940.15310.08890.1239-0.0059-0.02490.0166-0.0014s.e.0.03560.03560.03630.03690.03700.0373003730.03710.03700)arima(x=rate,order=c(12,1,arlOarilarl2-0.09550.0350-0.12820.03650.03570.0358sigma*2estimatedas0.03778:loglikelih
15、ood=17075,aic=-3155tsdiag(ml,gof=24)m2=arima(rate,order=c(2,1,1),seasonal=list(order=c(l,0,1),period=12)m2Call:arima(x=rate,order=c(2,1,1),seasonal=list(order=c(l,0,1),period=12)Coefficients:sigma*2estimatedas0.0363:loglikelihood=185.07,aic=-358.13tsdiag(m2,gof=24)#useforecastoriginatt=770.arlar20.5
16、9820.2300s.e.0.06250.0391malsarismal-0.59020.5515-0.81350.05770.07100.0521source(fore.R11)fore(ml,rate,770,12)TimeSeries:Start=771End=782Frequency=118.2155248.1151508.0808518.0106707.9903777.9635257.9560297.95121897.9905477.9899618.0290948.041167TimeSeries:Start=771End=782Frequency=110.19522650.2793
17、9620.37015620.46097550.55196690.64942920.741492780.83073920.91916381.00459921.08094941.1574140rate771:78218.28.18.28.28.28.17.87.97.87.87.97.7p2=fore(m2,rate,770,12)source(foreplot.R)foreplot(p2,rate,770,750)%Noshowninthehandoutsource(backtest.R)backtest(ml,rate,760,1)1HRMSEofout-of-sampleforecasts1
18、110.1288231111Meanabsoluteerrorofout-of-sampleforecasts1110.1029483backtest(m2,rate,760,1)1HRMSEofout-of-sampleforecasts1110.1156268111Meanabsoluteerrorofout-of-sampleforecasts10.09050361Moving-average(MA)modelModelwithfinitememory!SomedailystockreturnshaveminorserialcorrelationsandcanbemodeledasMAo
19、rARmodels.MA(1)modelForm:rt=“+9at_iStationarity:alwaysstationary.Mean(orexpectation):E(心)=“Variance:Var(n)=(1+的代.Autocovariance:Lag1:Cov(幾”_i)=一吠Lag0:Cov(n,=0for1.Thus,rtisnotrelatedto化_2,幾一3:ACF:pi=磊,pg=0for1.Finitememory!MA(1)modelsdonotrememberwhathappentwotimeperiodsago.Forecast(atorigint=n):14
20、1-stepahead:rn,(l)=“一Oan.Why?Becauseattimen,anisknown,butan+iisnot.1-stepaheadforecasterror:en(l)=aniwithvarianceMulti-stepahead:=“for01.Thus,foranMA(1)model,themulti-stepaheadforecastsarejustthemeanoftheseries.Why?Becausethemodelhasmemoryof1timeperiod.Multi-stepaheadforecasterror:Varianceofmulti-st
21、epaheadforecasterror:(1+02)必=varianceofn.Invertibility:Concept:rtisaproperlinearcombinationofatandthepastobservationsn_i?心_2,.Whyisitimportant?Itprovidesasimplewaytoobtaintheshockat,F(xiàn)oraninvertiblemodel,thedependenceofrton化_0convergestozeroas0increases.Condition:62.Forecastsgothethemeanafter2periods
22、.BuildinganMAmodelSpecification:UsesampleACFSampleACFsareallsmallafterlagqforanMA(g)series.(SeetestofACF.)Constantterm?Checkthesamplemean.Estimation:usemaximumlikelihoodmethodConditional:Assumeat=0for0Exact:Treata/with1,butpi=01-況/Var(77)豐0i.ThisisthedifferencebetweenAR(1)andARMA(1,1)models.PACF:doe
23、snotcutoffatfinitelags.BuildinganARMA(1,1)modelSpecification:useEACForAICWhatisEACF?Howtouseit?Seetext.Estimation:cond.orexnctlikelihoodmethodModelchecking:asbeforeForecast:MA(1)affectsthe1-stepaheadforecast.OthersaresimilartothoseofAR(1)models.Threemodelrepresentations:ARMAform:compact.,usefulinest
24、imationandforecastingARrepresentation:(bylongdivision)rt=(/)()+at+7Tin_i+7T2心_2+Ittellshowrtdependsonitspastvalues.MArepresentation:(bylongdivision)rt=/i+at+妙g_i+妙2他_2TIttellshowrtdependsonthepastshocks.Forastationaryseries,血convergestozeroasiToo.Thus,theeffectofanyshockistransitory.TheMArepresentat
25、ionisparticularlyusefulincomputingvariancesofforecasterrors.Fora-st.epaheadforecast,theforecasterrorisen()=an+e+血+仇_1術(shù)+1ThevarianceofforecasterrorisVar%(0)=(1+悄卜詭_1)龍.Unit-rootNonstationarityRandomwalkFormpt=pt-i+atUnitroot?ItisanAR(1)modelwithcoefficient0i=1.Nonstationary:Why?Becausethevarianceof幾d
26、ivergestoinfinityastincreases.Strongmemory:sampleACFapproaches1foranyfinitelag.RepeatedsubstitutionshowsTOC o 1-5 h zooooPt=工=工i=0i=0where冊=1foralli.Thus,血doesnotconvergetozero.Theeffectofanyshockispermanent.RandomwalkwithdriftForm:pt=M+Pt-i+g“豐0.HasaunitrootNonstationarvzStrongmemoryHasatimetrendwi
27、thslopeWhy?differencing1stdifference:rt=PtPt-iIfptisthelogprice,thenthe1stdifferenceissimplythelogreturn.Typically,1stdifferencemeansthechange:or*incre-mentoftheoriginalseries.Seasonaldifference:yt=Pt.Pt-s.wheresistheperiodicity,e.g.s=4forquarterlyseriesands=12formonthlyseries.Ifptdenotesquarterlyea
28、rnings,thenytisthechangeinearningfromthesamequarteroneyearbefore.MeaningoftheconstantterminamodelMAmodel:meanARmodel:relatedtomean1stdifferenced:timeslope,etc.PracticalimplicationinfinancialtimeseriesExample:MonthlylogreturnsofGeneralElectrics(GE)from1926to1999(74years)Samplemean:1.04%,std(/z)=0.26V
29、erysignificant!isabout12.45%ayear$1investmentinthebeginningof1926isworthannualcompoundedpayment:$5907quarterlycompoundedpayment:$8720monthlycompoundedpayment:$9570Continuouslycompounded?Unit-roottestLetptbethelogpriceofanasset.Totestthatptisnotpredictable(i.e.hasaunitroot),twomodelsarecommonlyemploy
30、ed:Pt=01仇1+etPt=00+血仇_1+勺Thehypothesisofinterestis耳:0i=1vsHa:0ida=read.table(rq-gdpc96.txt,header=T)gdp=log(da,4)adfTest(gdp,lag=4,type=c(11cH)#AssumeanAR(4)modelfortheseriesTitle:AugmentedDickey-FullerTestTestResults:PARAMETER:LagOrder:4STATISTIC:Dickey-Fuller:-1.7433PVALUE:0.4076#cannotrejectthenu
31、llhypothesisofaunitroot*Amorecarefulanalysisx=diff(gdp)ord=ar(x)#identifyanARmodelforthedifferencedseriesordCall:ar(x=x)Coefficients:1230.34290.1238-0.1226Orderselected3sigma*2estimatedas8.522e-05#AnAR(3)forthedifferenceddataisconfirmed#OurpreviousanalysisisjustifiedDiscussion:ThecommandarimaonR.Dealingwiththeconstantterm.Ifthereisanydifferencing,noconstantisused.Thesubcommandinclude.mean=Tinthearimacommand.Fixingsomeparameters.Usesubcommandfixedinarima.Useunemploymentrateseriesasanexample.RDemonstration:Handlingoutliersrl=ml
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年四川省廣安市中考英語試題含解析
- 蘇教版六年級心理健康教育教案
- 全省小學(xué)數(shù)學(xué)教師賽課一等獎數(shù)學(xué)一年級上冊(人教2024年新編)《6和7的加、減法應(yīng)用》課件
- 全省小學(xué)數(shù)學(xué)教師賽課一等獎數(shù)學(xué)一年級上冊(人教2024年新編)《在校園里找一找》課件
- 2014-2018年全球PET瓶胚注塑機行業(yè)市場調(diào)查及前期規(guī)劃分析報告
- 2024至2030年中國手持式管道清理機數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國彈性布數(shù)據(jù)監(jiān)測研究報告
- 2010-2012年環(huán)氧丙烷行業(yè)分析及企業(yè)競爭力分析報告
- 2024至2030年中國聲音傳感器數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國印刷電路板型端子臺數(shù)據(jù)監(jiān)測研究報告
- 可編程控制器應(yīng)用實訓(xùn)-形考任務(wù)4
- 爐渣綜合處理項目的檢修維護方案
- 管理學(xué)原理(南大馬工程)
- 人才引進考核評分表
- 壓力管道安裝許可規(guī)則-TSG D3001-2021
- 煤氣中毒事故應(yīng)急演練預(yù)案方案
- 體檢科醫(yī)療質(zhì)量控制工作計劃
- 國有公司總部禮品管理辦法 模版
- 口腔頜面部檢查課件
- 2020年重癥醫(yī)學(xué)科病人呼吸心跳驟停演練方案及腳本
- 平衡記分卡應(yīng)用流程
評論
0/150
提交評論