




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 # LectureNotesofBus41202(Spring2013)AnalysisofFinancialTimeSeriesRueyS.TsaySimpleARmodels:(Regressionwithlaggedvariables.)Motivatingexample:ThegrowthrateofU.S.quarterlyrealGNPfrom1947to1991.Recallthatthemodeldiscussedbeforeisrt=0.005+0.35r/_i+0.18心_20.14幾_3+%aa=0.01.ThisiscalledanAR(3)modelbecauset
2、hegrowthrate門dependsonthegrowthratesofthepastthreequarters.Howdowespecifythismodelfromthedata?Isitadequateforthedata?Whataretheimplicationsofthemodel?Thesearethequestionsweshalladdressinthislecture.Anotherexample:U.S.monthlyunemploymentrate.AR(1)model:Form:幾=+01門_1+%where0and機arerealnumbers,whichare
3、referredtoasparameters(tobeestimatedfromthedatainanapplication).Forexample,rt=0.005+0.2n_i+atStationarity:necessaryandsufficientcondition|0i|2.Stochasticbusinesscycle:if+4020,then幾showschar-ncteristicsofbusinesscycleswithaveragelength.27Twherethecosineinverseisstatedinradian.Ifwedenotethesolutionsof
4、thepolynomialasbi,wherei=/T5thenwehave0i=2aand02=(以+以)sothat27TInRorS-Plus,onecanobtain/a2+b2usingthecommandMod.Forecasts:SimilartoAR(1)modelsSimulationinR:Usethecommandarima.simyl=arimasim(model=list(ar=c(13,一.4),1000)y2=arimasim(model=list(ar=c(8,一.7),1000)ChecktheACFandPACFoftheabovetwosimulateds
5、eries.Discussion:(Referenceonly)AnAR(2)modelcanbewrittenasanAR(1)modelifoneexpandsthedimension.Specifically,wehave4=0i(n_i“)+血(幾2“)+心rt-i=rt-i4(anidentity.)Now,puttingthetwoequationstogether,wehave幾一“.n-i一“010210rt-i-“atThisisa2-dimensionalAR(1)model.SeveralpropertiesoftheAR(2)modelcanbeobtainedfrom
6、theexpandedAR(1)model.BuildinganARmodelOrderspecificationPartialACF:(naive,buteffective)UseconsecutivefittingsSeeText(p.40)fordetailsKeyfeature:PACFcutsoffatlagpforanAR(p)model.Illustration:SeethePACFoftheU.S.quarterlygrowthrateofGNP.Akaikeinformationcriterion2/4W)=ln()+foranAR()model,where進istheMLE
7、ofresidualvariance.FindtheARorderwithminimumAICfor60,P.BICcriterion:BIC)=ln&)+轡1Series:dgnpcooCMoLLonames(ml)1rder116Hn.used1111series*11ar11order.max”frequency11Hvar.pred1x-mean11aic11Hpartialacf11resid11methodcallasy.var.coefplot(ml$resid,type=;1;)%Plotresidualsofthefittedmodel(notshown)Box.test(m
8、l$resid,lag=10,type=;Ljungy)%ModelcheckingBox-Ljungtestdata:ml$residX-squared=7.0808,df=10,p-value=0.7178m2=arima(x,order=c(3,0,0)%Anotherapproachwithordergiven.m2Call:Coefficients:arlar2ar3034800.1793-0.1423s.e.0.07450.077800745arima(x=x,order=c(3,0,0)intercept%Fittedmodelis0.0077%y(t)=0.348y(t-1)+
9、0.179y(t-2)0.0012%-0142y(t-3)+a(t),%wherey(t)=x(t)-0.0077sigma*2estimatedas9427e-05:loglikelihood=565.84,aic=-1121.68names(m2)1Hcoef”sigma2var.coef11maskloglik11aic117,armaresiduals11call11series11code11Hn.condH13modelBoxtest(m2$residuals,lag=10,type=Ljung)Box-Ljungtestdata:m2$residualsX-squared=7.0
10、169,df=10,p-value=0.7239plot(m2$residuals,type=J1J)%Residualplottsdiag(m2)%obtain3plotsofmodelchecking(notshowninhandout)pl=c(l,-m2$coef1:3)%Furtheranalysisofthefittedmodelroots=polyroot(pl)roots11.590253+1.063882e+00i-1.920152-3530887e-17i1.590253-1.063882e+00iMod(roots)11.9133081.9201521.913308k=2
11、*pi/acos(1.590253/1.913308)k110.65638predict(m2,8)%Predictionl-stepto8-stepahead$predTimeSeries:Start=177End=184Frequency=110.0012362540.0045555190.0074549060.00795851850.0081814420.0079368450.0078200460.007703826$seTimeSeries:Start=177End=184Frequency=110.0097093220.0102805100.0106863050.0106889945
12、0.0106897330.0106947710.0106955110.010696190Anotherexample:IVIonthlyUSunemploymentTatefromJanuary1948toFebruary2013.Demonstration:inclass,includingtheRscriptsfore,foreplot:andbacktest.require(quantmod)getSymbols(NRATE,src=,FREDu)rate=as.numeric(UNRATE$UNRATE)unrate=ts(rate,frequency=12,start=c(1948,
13、1)plot(unrate)head(UNRATE)UNRATE1948-01-013.41948-02-013.81948-06-013.6acf(rate)acf(diff(rate)par(mfcol=c(2,l)acf(rate)acf(diff(rate)ml=ar(diff(rate),method=Hmleu)varp:redHpartialacfncallx.mean11aic11resid11method11asy.var.coef11names(ml)1,ordernar6Hnused11order.max111series1frequencyml$order112ml=a
14、rima(rate,order=c(12,1,0)mlCall:Coefficients:arlar2ar3ar4ar5ar6ar7ar8ar90.02330.21940.15310.08890.1239-0.0059-0.02490.0166-0.0014s.e.0.03560.03560.03630.03690.03700.0373003730.03710.03700)arima(x=rate,order=c(12,1,arlOarilarl2-0.09550.0350-0.12820.03650.03570.0358sigma*2estimatedas0.03778:loglikelih
15、ood=17075,aic=-3155tsdiag(ml,gof=24)m2=arima(rate,order=c(2,1,1),seasonal=list(order=c(l,0,1),period=12)m2Call:arima(x=rate,order=c(2,1,1),seasonal=list(order=c(l,0,1),period=12)Coefficients:sigma*2estimatedas0.0363:loglikelihood=185.07,aic=-358.13tsdiag(m2,gof=24)#useforecastoriginatt=770.arlar20.5
16、9820.2300s.e.0.06250.0391malsarismal-0.59020.5515-0.81350.05770.07100.0521source(fore.R11)fore(ml,rate,770,12)TimeSeries:Start=771End=782Frequency=118.2155248.1151508.0808518.0106707.9903777.9635257.9560297.95121897.9905477.9899618.0290948.041167TimeSeries:Start=771End=782Frequency=110.19522650.2793
17、9620.37015620.46097550.55196690.64942920.741492780.83073920.91916381.00459921.08094941.1574140rate771:78218.28.18.28.28.28.17.87.97.87.87.97.7p2=fore(m2,rate,770,12)source(foreplot.R)foreplot(p2,rate,770,750)%Noshowninthehandoutsource(backtest.R)backtest(ml,rate,760,1)1HRMSEofout-of-sampleforecasts1
18、110.1288231111Meanabsoluteerrorofout-of-sampleforecasts1110.1029483backtest(m2,rate,760,1)1HRMSEofout-of-sampleforecasts1110.1156268111Meanabsoluteerrorofout-of-sampleforecasts10.09050361Moving-average(MA)modelModelwithfinitememory!SomedailystockreturnshaveminorserialcorrelationsandcanbemodeledasMAo
19、rARmodels.MA(1)modelForm:rt=“+9at_iStationarity:alwaysstationary.Mean(orexpectation):E(心)=“Variance:Var(n)=(1+的代.Autocovariance:Lag1:Cov(幾”_i)=一吠Lag0:Cov(n,=0for1.Thus,rtisnotrelatedto化_2,幾一3:ACF:pi=磊,pg=0for1.Finitememory!MA(1)modelsdonotrememberwhathappentwotimeperiodsago.Forecast(atorigint=n):14
20、1-stepahead:rn,(l)=“一Oan.Why?Becauseattimen,anisknown,butan+iisnot.1-stepaheadforecasterror:en(l)=aniwithvarianceMulti-stepahead:=“for01.Thus,foranMA(1)model,themulti-stepaheadforecastsarejustthemeanoftheseries.Why?Becausethemodelhasmemoryof1timeperiod.Multi-stepaheadforecasterror:Varianceofmulti-st
21、epaheadforecasterror:(1+02)必=varianceofn.Invertibility:Concept:rtisaproperlinearcombinationofatandthepastobservationsn_i?心_2,.Whyisitimportant?Itprovidesasimplewaytoobtaintheshockat,F(xiàn)oraninvertiblemodel,thedependenceofrton化_0convergestozeroas0increases.Condition:62.Forecastsgothethemeanafter2periods
22、.BuildinganMAmodelSpecification:UsesampleACFSampleACFsareallsmallafterlagqforanMA(g)series.(SeetestofACF.)Constantterm?Checkthesamplemean.Estimation:usemaximumlikelihoodmethodConditional:Assumeat=0for0Exact:Treata/with1,butpi=01-況/Var(77)豐0i.ThisisthedifferencebetweenAR(1)andARMA(1,1)models.PACF:doe
23、snotcutoffatfinitelags.BuildinganARMA(1,1)modelSpecification:useEACForAICWhatisEACF?Howtouseit?Seetext.Estimation:cond.orexnctlikelihoodmethodModelchecking:asbeforeForecast:MA(1)affectsthe1-stepaheadforecast.OthersaresimilartothoseofAR(1)models.Threemodelrepresentations:ARMAform:compact.,usefulinest
24、imationandforecastingARrepresentation:(bylongdivision)rt=(/)()+at+7Tin_i+7T2心_2+Ittellshowrtdependsonitspastvalues.MArepresentation:(bylongdivision)rt=/i+at+妙g_i+妙2他_2TIttellshowrtdependsonthepastshocks.Forastationaryseries,血convergestozeroasiToo.Thus,theeffectofanyshockistransitory.TheMArepresentat
25、ionisparticularlyusefulincomputingvariancesofforecasterrors.Fora-st.epaheadforecast,theforecasterrorisen()=an+e+血+仇_1術+1ThevarianceofforecasterrorisVar%(0)=(1+悄卜詭_1)龍.Unit-rootNonstationarityRandomwalkFormpt=pt-i+atUnitroot?ItisanAR(1)modelwithcoefficient0i=1.Nonstationary:Why?Becausethevarianceof幾d
26、ivergestoinfinityastincreases.Strongmemory:sampleACFapproaches1foranyfinitelag.RepeatedsubstitutionshowsTOC o 1-5 h zooooPt=工=工i=0i=0where冊=1foralli.Thus,血doesnotconvergetozero.Theeffectofanyshockispermanent.RandomwalkwithdriftForm:pt=M+Pt-i+g“豐0.HasaunitrootNonstationarvzStrongmemoryHasatimetrendwi
27、thslopeWhy?differencing1stdifference:rt=PtPt-iIfptisthelogprice,thenthe1stdifferenceissimplythelogreturn.Typically,1stdifferencemeansthechange:or*incre-mentoftheoriginalseries.Seasonaldifference:yt=Pt.Pt-s.wheresistheperiodicity,e.g.s=4forquarterlyseriesands=12formonthlyseries.Ifptdenotesquarterlyea
28、rnings,thenytisthechangeinearningfromthesamequarteroneyearbefore.MeaningoftheconstantterminamodelMAmodel:meanARmodel:relatedtomean1stdifferenced:timeslope,etc.PracticalimplicationinfinancialtimeseriesExample:MonthlylogreturnsofGeneralElectrics(GE)from1926to1999(74years)Samplemean:1.04%,std(/z)=0.26V
29、erysignificant!isabout12.45%ayear$1investmentinthebeginningof1926isworthannualcompoundedpayment:$5907quarterlycompoundedpayment:$8720monthlycompoundedpayment:$9570Continuouslycompounded?Unit-roottestLetptbethelogpriceofanasset.Totestthatptisnotpredictable(i.e.hasaunitroot),twomodelsarecommonlyemploy
30、ed:Pt=01仇1+etPt=00+血仇_1+勺Thehypothesisofinterestis耳:0i=1vsHa:0ida=read.table(rq-gdpc96.txt,header=T)gdp=log(da,4)adfTest(gdp,lag=4,type=c(11cH)#AssumeanAR(4)modelfortheseriesTitle:AugmentedDickey-FullerTestTestResults:PARAMETER:LagOrder:4STATISTIC:Dickey-Fuller:-1.7433PVALUE:0.4076#cannotrejectthenu
31、llhypothesisofaunitroot*Amorecarefulanalysisx=diff(gdp)ord=ar(x)#identifyanARmodelforthedifferencedseriesordCall:ar(x=x)Coefficients:1230.34290.1238-0.1226Orderselected3sigma*2estimatedas8.522e-05#AnAR(3)forthedifferenceddataisconfirmed#OurpreviousanalysisisjustifiedDiscussion:ThecommandarimaonR.Dealingwiththeconstantterm.Ifthereisanydifferencing,noconstantisused.Thesubcommandinclude.mean=Tinthearimacommand.Fixingsomeparameters.Usesubcommandfixedinarima.Useunemploymentrateseriesasanexample.RDemonstration:Handlingoutliersrl=ml
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預防擁擠踩踏班會課件
- 攜手抗疫守護健康
- 我為健康而來主題演講大綱
- 健康飲食產(chǎn)業(yè)園項目風險管理方案
- 電網(wǎng)側獨立儲能示范項目資金申請報告(參考)
- 2025年高效的鍋爐鼓、引風機項目發(fā)展計劃
- 系統(tǒng)解剖學試題(附參考答案)
- 2025年環(huán)保節(jié)能型冷卻塔項目合作計劃書
- 物業(yè)管理企業(yè)財務管理規(guī)定
- 武漢體育學院附屬體育運動學校招聘真題
- DB11-T 1952-2022 地理國情監(jiān)測技術規(guī)程
- 記憶有方 過目不忘 課件
- 3D三維可視化BIM模板安全施工方案
- GB/T 15843.2-2024網(wǎng)絡安全技術實體鑒別第2部分:采用鑒別式加密的機制
- 餐飲場所裝修安全協(xié)議模板
- 附件3:微創(chuàng)介入中心評審實施細則2024年修訂版
- 譯林版初中英語九年級上冊全冊教學課件-譯林版初中英語課件app
- 醫(yī)院患者輸液泵使用操作并發(fā)癥的預防及處理流程
- GB/T 43983-2024足球課程學生運動能力測評規(guī)范
- 地下室外墻大截面套管后開洞加固防水處理節(jié)點技術
- 中國民族鋼琴藝術鑒賞智慧樹知到期末考試答案章節(jié)答案2024年西安交通大學
評論
0/150
提交評論