水環(huán)境中抗生素的吸附處理研究報(bào)告進(jìn)展_第1頁(yè)
水環(huán)境中抗生素的吸附處理研究報(bào)告進(jìn)展_第2頁(yè)
水環(huán)境中抗生素的吸附處理研究報(bào)告進(jìn)展_第3頁(yè)
水環(huán)境中抗生素的吸附處理研究報(bào)告進(jìn)展_第4頁(yè)
水環(huán)境中抗生素的吸附處理研究報(bào)告進(jìn)展_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、-. z.環(huán)境化學(xué)結(jié)課論文2015-2016學(xué)年度第二學(xué)期水環(huán)境中抗生素的吸附處理研究進(jìn)展院系名稱化學(xué)與生命科學(xué)學(xué)院專業(yè)環(huán)境科學(xué)與工程學(xué)生明月周亮* 36 41指導(dǎo)教師紹貴摘要近年來(lái),抗生素被大量應(yīng)用在臨床及畜禽和水產(chǎn)養(yǎng)殖,用于疾病的預(yù)防治療及有機(jī)體的生長(zhǎng)促進(jìn)。但抗生素機(jī)體吸收差,水溶性強(qiáng),常以活性形式(母體或代產(chǎn)物)隨人和畜禽排泄、水產(chǎn)養(yǎng)殖及制藥廢水排放持續(xù)進(jìn)入環(huán)境,最終殘留于土壤和水體??股卦诃h(huán)境中的持久性殘留和蓄積可導(dǎo)致微生物菌群耐藥等諸多生態(tài)毒性,嚴(yán)重影響人類安康和生態(tài)平衡。目前,在國(guó)外各類水體中經(jīng)常能檢出ngL-gL污染級(jí)別的抗生素殘留??股赜捎谄涮厥獾囊志驕缇阅?,可生化性極

2、差,傳統(tǒng)的水和廢水處理技術(shù)一般無(wú)法對(duì)其有效去除。為控制其污染,有效的抗生素去除方法日益受到國(guó)外廣泛關(guān)注。目前關(guān)于水中抗生素去除方法的研究主要集中在高級(jí)氧化法、吸附法、膜別離技術(shù)及組合工藝等。其中基于自由基氧化的高級(jí)氧化技術(shù)得到廣泛關(guān)注,工藝一般選用03、H202,結(jié)合光照,或組合金屬及半導(dǎo)體光催化劑來(lái)實(shí)現(xiàn),但該方法不僅本錢(qián)高,條件苛刻,且在降解抗生素的過(guò)程中很難實(shí)現(xiàn)礦化,降解產(chǎn)生的中間代物常表現(xiàn)出比母體抗生素更強(qiáng)的生態(tài)毒性,應(yīng)用受到限制。而吸附法,作為一種非破壞手段,常表現(xiàn)出低本錢(qián)、易操作、污染物脫除率高且無(wú)高毒性代物風(fēng)險(xiǎn)等優(yōu)點(diǎn),成為環(huán)境污染物治理技術(shù)中最具應(yīng)用前景的方法之一,而如何設(shè)計(jì)開(kāi)發(fā)低

3、本錢(qián)高性能的吸附劑成為吸附處理水環(huán)境中抗生素類污染物的關(guān)鍵。開(kāi)展新型高效經(jīng)濟(jì)吸附劑的研究,將對(duì)環(huán)境保護(hù)和人類的可持續(xù)開(kāi)展具有非常重要的現(xiàn)實(shí)意義。關(guān)鍵詞:抗生素吸附活性炭污染治理類石墨烯-. z.1.1引文伴隨人類社會(huì)的不斷開(kāi)展,環(huán)境污染問(wèn)題在全球圍日益加劇,其中水污染問(wèn)題已成為人類經(jīng)濟(jì)可持續(xù)開(kāi)展的重要制約因素。1999年Daughton等提出藥品及個(gè)人護(hù)理用品(Pharmaceuticals and Personal Care Products,PPCPs)的環(huán)境污染和生態(tài)毒性問(wèn)題,這類具有生物活性的新型污染物逐漸引起國(guó)外的廣泛關(guān)注。PPCPs包括藥品(如抗生素、消炎藥、鎮(zhèn)靜劑、降壓藥、激素、

4、抗抑郁藥、抗癲癇藥、照影劑、防腐劑等)和個(gè)人護(hù)理用品(染發(fā)劑、香料、洗發(fā)水、沐浴液、防曬霜等)等數(shù)千種日常生活量使用的化學(xué)品。不同于傳統(tǒng)持久性有機(jī)污染物(Persistent Organic Pollutants,POPs)的難降解、生物蓄積和全球循環(huán),大多數(shù)PPCPs的極性強(qiáng)、易溶于水而又不易揮發(fā),在環(huán)境中主要通過(guò)水體傳遞并向食物鏈擴(kuò)散,水環(huán)境往往成為PPCPs類污染物的主要儲(chǔ)庫(kù)。雖然PPCPs的的半衰期不是很長(zhǎng),但是由于大量頻繁地連續(xù)輸入,導(dǎo)致PPCPs不斷富集于自然界的水體或土壤中,呈現(xiàn)一種假持續(xù)狀態(tài),成為環(huán)境中的一種虛擬持久性化學(xué)物質(zhì)。全球各種水體:海洋、江河、湖泊、沼澤等地表水、地下

5、水,甚至飲用水中均已檢測(cè)到此類污染物。盡管目前檢測(cè)出的濃度還比擬低,一般在ngg-gL水平,但其對(duì)生態(tài)系統(tǒng)及人類安康導(dǎo)致的負(fù)面影響不容無(wú)視。的PPCPs對(duì)環(huán)境帶來(lái)的分泌干擾和微生物耐藥等危害已對(duì)人們敲響警鐘??股?,作為PPCPs這類新型污染物的主要組成之一,由于其大量廣泛地使用,目前己對(duì)環(huán)境尤其是微生態(tài)系統(tǒng)造成日益嚴(yán)峻的不良影響。越來(lái)越多的資料說(shuō)明,自然界的一些細(xì)菌對(duì)抗生素的耐藥性比預(yù)期的要高得多。在世界圍抗生素用量巨大,而且逐年遞增。我國(guó)每年抗生素原料生產(chǎn)量約21萬(wàn)噸,成為抗生素最大生產(chǎn)國(guó)。據(jù)統(tǒng)計(jì)全球每年生產(chǎn)的抗素除了用于人類疾病治療外,約有70還用于畜牧業(yè)和水產(chǎn)養(yǎng)殖業(yè)??股夭⒉槐粰C(jī)體完

6、全吸收,約2575以原形母體或代物(共軛態(tài)、氧化產(chǎn)物、水解產(chǎn)物等)的形式隨糞便和尿液排入環(huán)境,且大多數(shù)仍具生物活性。此外,抗生素還通過(guò)水產(chǎn)養(yǎng)殖過(guò)程中的直接撒入以及生產(chǎn)過(guò)程中的污水排放等方式進(jìn)入環(huán)境。雖然目前環(huán)境中殘留的抗生素還處在痕量水平,但長(zhǎng)期持久性的暴露,將不可防止地對(duì)生態(tài)系統(tǒng)和人類安康造成巨大影響。一般傳統(tǒng)的污水處理技術(shù)無(wú)法有效去除此類污染物,而倍受關(guān)注的高級(jí)氧化法又存在本錢(qián)高、難控制、易產(chǎn)生高毒性代中間體、且處理痕量污染物能力差等缺陷。吸附法,作為一種非破壞性的物理技術(shù),不僅本錢(qián)低、操作簡(jiǎn)單、效率高,而且處理過(guò)程中無(wú)高毒代物風(fēng)險(xiǎn),被認(rèn)為是治理環(huán)境中痕量污染物技術(shù)中最具前景的有效手段之一

7、。如何設(shè)計(jì)開(kāi)發(fā)低本錢(qián)、易合成的新型高效吸附劑并用于水中抗生素污染物的去除具有重要的研究?jī)r(jià)值。本文就水環(huán)境中抗生素的污染現(xiàn)狀和治理技術(shù)進(jìn)展了綜述,并重點(diǎn)介紹了吸附法在其污染治理中的應(yīng)用。1.2水體抗生素污染現(xiàn)狀抗生素及其使用傳統(tǒng)意義上的抗生素(antibiotic)被定義為一種能夠殺滅微生物或抑制微生物生長(zhǎng)的化合物。然而,廣義上抗生素則泛指為抗菌藥、抗病毒藥、抗真菌藥和抗腫瘤藥的總稱。大局部抗生素來(lái)源于微生物,是微生物代活動(dòng)中產(chǎn)生的一類次級(jí)代產(chǎn)物,但也可以通過(guò)人工化學(xué)方法半合成或全合成得到。自1940年青霉素應(yīng)用于臨床以來(lái),人類開(kāi)場(chǎng)廣泛使用抗生素。目前抗生素的種類已達(dá)數(shù)千種,在臨床上常用的亦有數(shù)

8、百種。抗生素可以按照不同的標(biāo)準(zhǔn)(如光譜特征、作用機(jī)制或化學(xué)構(gòu)造)進(jìn)展分類。例如,按化學(xué)構(gòu)造的不同可以將抗生素分為酰胺類、四環(huán)素類、氨基糖甙類、大環(huán)酯類、喹諾酮類、磺胺類等。目前抗生素已從起初的臨床抗感染擴(kuò)展到現(xiàn)今約70以上用于農(nóng)業(yè)、養(yǎng)殖業(yè)等領(lǐng)域??股爻Mㄟ^(guò)抑制核酸代、蛋白質(zhì)合成或細(xì)胞壁合成,影響細(xì)胞膜構(gòu)造,或干擾細(xì)菌能量代等作用機(jī)制來(lái)抑制微生物生長(zhǎng)或殺滅微生物。在臨床上,抗生素主要用于治療和控制感染性疾病。據(jù)不完全統(tǒng)計(jì),我國(guó)臨床抗生素年使用率高達(dá)70以上,人均年消耗量近140 g,在臨床用藥總量中占近30的比例,銷(xiāo)售額位于全球藥品市場(chǎng)第二位。在農(nóng)業(yè)領(lǐng)域,抗生素常用于防治病蟲(chóng)草鼠等有害生物或調(diào)

9、節(jié)植物生長(zhǎng),農(nóng)業(yè)抗生素的使用量目前約占生物農(nóng)藥總量的70,主要有殺菌劑阿米西達(dá),殺蟲(chóng)劑土霉素,除草劑阿維菌素,植物生長(zhǎng)調(diào)節(jié)劑赤霉素等幾百種。此外,抗生素還被廣泛應(yīng)用在畜牧和水產(chǎn)養(yǎng)殖,作為飼料添加劑,用以防治動(dòng)物疾病、提高詞料利用率、促進(jìn)畜禽生長(zhǎng)等。僅畜牧養(yǎng)殖方面我國(guó)每年抗生素的使用量就約占抗生素總產(chǎn)量的50。近年隨著我國(guó)水產(chǎn)養(yǎng)殖業(yè)的迅猛開(kāi)展,抗生素在水產(chǎn)養(yǎng)殖中的用量也逐年增多。水體抗生素的來(lái)源及污染途徑由于抗生素類藥物具有在低濃度下選擇性抑制或殺滅其它菌種微生物或腫瘤細(xì)胞的能力,因此,在人類感染性疾病的控制和動(dòng)植物病蟲(chóng)害的防治等方面抗生素占據(jù)著極其重要的地位。數(shù)年來(lái),抗生素被頻繁大量使用,造成

10、其在水中的殘留越來(lái)越多,對(duì)水的污染愈加嚴(yán)重。全球多種環(huán)境介質(zhì)尤其是水體環(huán)境中已頻繁檢測(cè)到該類化學(xué)藥品的殘留,而且殘留量呈顯著上升趨勢(shì)。環(huán)境中抗生素的來(lái)源及污染途徑主要見(jiàn)圖11。醫(yī)用抗生素喹諾酮類、磺胺類、p酰胺類和大環(huán)酯類等抗生素是常用的醫(yī)用抗生素。一方面,抗生素給藥后由于機(jī)體吸收差,約2575以母體或活性代物的形式隨糞便和尿液排出體外,通過(guò)城市和醫(yī)院污水管網(wǎng)進(jìn)入污水處理廠(WWTPs)處理(很難徹底去除抗生素)后匯入地表水,繼而污染地下水,甚至再次經(jīng)由飲用水處理廠(DWTPs)而進(jìn)入飲用水。另一方面,未使用的抗生素由于過(guò)期而隨意丟棄,將經(jīng)由垃圾填埋場(chǎng)的瀝濾而進(jìn)入地下水、繼而污染地表水。這些水

11、介質(zhì)中的抗生素都有可能由動(dòng)植物攝入進(jìn)入食物鏈繼而在環(huán)境中循環(huán)。獸用抗生素畜禽養(yǎng)殖或?qū)櫸镲曫B(yǎng)過(guò)程中常使用四環(huán)素類、喹諾酮類、青霉素類等抗生素以防治動(dòng)物感染性疾病或促進(jìn)動(dòng)物生長(zhǎng)。尤其是動(dòng)物飼料中普遍摻入的AGP(抗生素生長(zhǎng)促進(jìn)劑)造成獸用抗生素的年均使用量已大大超過(guò)人類醫(yī)療領(lǐng)域且逐年升高。獸用抗生素主要隨禽畜糞便和尿液排出,然后以糞肥施用于農(nóng)田,隨農(nóng)田灌溉系統(tǒng)進(jìn)入土壤環(huán)境,繼而通過(guò)徑流或?yàn)r濾進(jìn)入地表水和地下水。此外,獸用抗生素也可由于畜禽體殘留而進(jìn)入食物鏈。水產(chǎn)養(yǎng)殖用抗生素和農(nóng)用抗生素隨著現(xiàn)代水產(chǎn)養(yǎng)殖業(yè)的開(kāi)展,用于防治魚(yú)類疾病或促進(jìn)魚(yú)類生長(zhǎng)繁殖的抗生素用量逐年增大。水產(chǎn)養(yǎng)殖用抗生素主要有四環(huán)素類、

12、氟喹諾酮類和磺胺類等,這些抗生素常通過(guò)混入飼料或直接投放而進(jìn)入水體,或經(jīng)由魚(yú)類食用后隨排泄物排入水體并在底泥中蓄積,水產(chǎn)品體殘留的抗生素被人類或其他水生動(dòng)植物攝入后進(jìn)入食物鏈。研究發(fā)現(xiàn),水產(chǎn)養(yǎng)殖中施用的抗生素僅2030被魚(yú)類吸收,7080將直接進(jìn)入水體。此外,用于防治農(nóng)作物病蟲(chóng)草鼠或調(diào)節(jié)生長(zhǎng)的農(nóng)用抗生素(農(nóng)抗)也有很大一局部經(jīng)雨水淋洗或徑流進(jìn)入水體,或由于農(nóng)作物表殘留經(jīng)食用進(jìn)入食物鏈??股刂扑帍U水抗生素的制備方法主要有微生物發(fā)酵提取、化學(xué)合成和半合成三種方式,其生產(chǎn)過(guò)程中排放的廢水是環(huán)境中抗生素污染的另一重要來(lái)源??股貜U水因含有多種難降解的生物毒性物質(zhì)和較高濃度的活性抗生素使其在WWTPs

13、生化處理過(guò)程中因能抑制微生物生長(zhǎng)而表達(dá)出頑固難生化降解的特性,加之抗生素生產(chǎn)過(guò)程中廢水排放的不連續(xù)性及較大的濃度波動(dòng),使降解處理難度進(jìn)一步加大。因此,抗生素廢水雖經(jīng)過(guò)WWTPs處理但仍將以高活性、高毒性的形式進(jìn)入地表水繼而污染地下水、飲用水、土壤或最終進(jìn)入食物鏈。水體抗生素的污染現(xiàn)狀抗生素作為全球性的新生污染物,其對(duì)環(huán)境尤其是水環(huán)境的危害逐漸引起世界圍的廣泛關(guān)注,其中環(huán)境中抗生素的殘留問(wèn)題也成為國(guó)外的研究熱點(diǎn)。 1982年Watts等首次在英國(guó)*河流中檢測(cè)出大環(huán)酯類、四環(huán)素類和磺胺類抗生素,污染濃度達(dá)1g/L。自此之后,關(guān)于水體中抗生素污染物的檢測(cè)報(bào)道日益趨多,涉及的水體包含地表水、地下水、海

14、水、飲用水、WWTPs 出水和醫(yī)院廢水等。此外,土壤、淤泥和動(dòng)植物生物體也檢測(cè)出抗生素殘留。在不同水體中抗生素污染等級(jí)存在一定的差異,通常情況下,醫(yī)院廢水中抗生素的污染級(jí)別最高,可高達(dá)gL級(jí)別,而城市污水中污染濃度常為低gL級(jí),地表水、海水和地下水則呈ngL級(jí)別的污染。此外,與農(nóng)業(yè)灌溉渠相通的河流抗生素殘留量明顯高于遠(yuǎn)離農(nóng)業(yè)灌溉區(qū)河流中的殘留量,且河底沉積物中的殘留量又高于上覆水。Brown等對(duì)美國(guó)新墨西哥州的數(shù)個(gè)醫(yī)院、宿舍區(qū)、乳制品廠和城市污水管道的23個(gè)污水樣品和3個(gè)格蘭德河地表水樣品檢測(cè)發(fā)現(xiàn)11種抗生素的殘留,58的樣品中至少檢測(cè)出1種抗生素,而25的樣品中殘留的抗生素多達(dá)3種或更多。其

15、中,在醫(yī)院和城市污水中檢出的相對(duì)高濃度的氧氟沙星(355 ugL)對(duì)生態(tài)環(huán)境可能帶來(lái)的潛在基因毒性和抗生素耐藥風(fēng)險(xiǎn)尤其值得關(guān)注。Watkinson等分析澳大利亞3家醫(yī)院、5家廢水處理廠、6條亞昆士蘭東南部水域的河流和飲用水水庫(kù)中的水樣,結(jié)果發(fā)現(xiàn)28種抗生素的殘留。醫(yī)院污水中主要檢出酰胺類,喹諾酮類和磺胺類抗生素,濃度在001-145 mugL圍;流入廢水處理廠的污水中抗生素濃度高達(dá)64 mug幾,經(jīng)處理后抗生素殘留量大大減少,抗生素的去除率平均能達(dá)80,但出水中仍有低ngL級(jí)別的痕量抗生素存在,局部抗生素的濃度能高達(dá)34 mugL,殘留的抗生素主要是大環(huán)酯類,喹諾酮類和磺胺類。6條河流的地表水

16、(包含淡水,河口水,海水)中頻繁檢出的抗生素殘留一般在低ngL至2 mugL濃度圍,殘留量的多少主要取決于廢水處理廠的處理能力。 Karthikeyan等檢測(cè)分析美國(guó)威斯康辛州的數(shù)個(gè)污水處理廠的出水,結(jié)果顯示處理后的排水中仍殘留有6種抗生素,按檢出頻率依次為:四環(huán)素和甲氧芐啶(80)磺胺甲惡唑(70)紅霉素(45)環(huán)丙沙星(40)磺胺甲嘧啶(10)。我國(guó)是抗生素生產(chǎn)和消費(fèi)大國(guó),且對(duì)抗生素的生產(chǎn)和使用缺乏科學(xué)而嚴(yán)格的管理,抗生素的濫用現(xiàn)象非常嚴(yán)重,致使抗生素持續(xù)大量地排入環(huán)境。此外,由于我國(guó)許多地區(qū)污水處理設(shè)施不健全,污水處理效果不理想,甚至局部污水未經(jīng)處理就直接排入地表水。因此我國(guó)各類環(huán)境介質(zhì)

17、中抗生素的殘留問(wèn)題極其嚴(yán)重,殘留濃度普遍趨高。Luo等對(duì)我國(guó)的海河及其6條支流的水樣中12種抗生素進(jìn)展分析發(fā)現(xiàn),這12種抗生素(主要為四環(huán)素類、磺胺類、喹諾酮類和大環(huán)酯類)中磺胺類抗生素的檢出頻率(76100)和檢出濃度(24,-,385 ngL)均最高,且其中有8種抗生素均來(lái)源于畜牧和水產(chǎn)養(yǎng)殖,養(yǎng)殖場(chǎng)附近水樣中抗生素的濃度達(dá)O1247 mugL,比當(dāng)?shù)匚鬯幚韽S污水中的含量高12倍。水體抗生素污染的危害水體中蓄積和殘存的抗生素將對(duì)生態(tài)環(huán)境和人類安康構(gòu)成長(zhǎng)期的潛在危害。由于抗生素在醫(yī)療和畜禽養(yǎng)殖等領(lǐng)域廣泛而不合理地濫用,使其持續(xù)不斷地流入環(huán)境,在環(huán)境中造成生物蓄積和假持續(xù)污染。雖然目前水體中抗

18、生素的殘留尚處于微量水平,但長(zhǎng)期持久性地暴露,將對(duì)水生態(tài)環(huán)境和人類安康構(gòu)成潛在風(fēng)險(xiǎn)。水體中抗生素污染引發(fā)的不良影響主要表達(dá)為以下幾個(gè)方面:對(duì)微生物生態(tài)系統(tǒng)的影響抗生素多為抗微生物藥物,能直接殺滅微生物或抑制其生長(zhǎng)。水體抗生素的持續(xù)殘留將加劇微生物耐藥現(xiàn)象,并影響微生物群落的組成,引發(fā)微生態(tài)失衡。一方面,病原微生物長(zhǎng)期接觸抗生素后,將發(fā)生基因突變產(chǎn)生耐藥菌株,這些耐藥菌株通常表達(dá)出很強(qiáng)的耐藥性。具體表達(dá)在病原微生物對(duì)抗生素的敏感性下降或消失,抗生素在治療這些耐藥菌引發(fā)的疾病時(shí)療效降低或失效。其耐藥機(jī)制目前認(rèn)為主要有酶促破壞,改變敏感靶部位或降低菌膜通透性等3種:耐藥菌中的耐藥因子可產(chǎn)生破壞抗生素

19、或使之失去抗菌作用的酶,使抗生素在作用于菌體前即被破壞或失效;耐藥菌株因基因突變致使抗生素作用靶位的蛋白發(fā)生改變,使抗生素?zé)o法與之結(jié)合而失去抗菌活性;耐藥菌通過(guò)生成改變膜通透性的障礙物使抗生素?zé)o法轉(zhuǎn)入菌體或?qū)⒖股匾蜣卓棺饔枚\(yùn)出體外,從而使抗生素藥效下降或消失。由于抗生素的濫用使得環(huán)境水體中殘留的抗生素不斷蓄積,微生物長(zhǎng)期暴露在含有抗生素的環(huán)境中將加劇抗生素耐藥菌的生成。當(dāng)這些耐藥菌感染生物體后,只能通過(guò)增大抗生素的劑量或改用及聯(lián)用它種抗生素才可能實(shí)現(xiàn)理想療效,繼而致使更多數(shù)量或更多種類的抗生素釋放入環(huán)境,最終導(dǎo)致更多更強(qiáng)耐藥菌種的出現(xiàn)。水體中逐漸增多的抗生素殘留還可能通過(guò)飲用水或生物吸收富

20、集入食物鏈,在食物鏈中惡性循環(huán),進(jìn)一步加劇耐藥性的產(chǎn)生。研究發(fā)現(xiàn),人和動(dòng)物體耐藥菌或耐藥因子向水體的擴(kuò)散及水體中持續(xù)暴露的微量抗生素對(duì)菌群產(chǎn)生的耐藥性選擇都可能引發(fā)或加劇微生物耐藥。此外,耐藥菌株或其耐藥質(zhì)粒還可直接在各種水體或食物鏈中傳播,從而加重耐藥性的擴(kuò)散或開(kāi)展。另一方面,環(huán)境水體中持續(xù)存在的抗生素還將影響微生物群落的組成,對(duì)微生態(tài)系統(tǒng)造成潛在風(fēng)險(xiǎn)。由于抗生素耐藥現(xiàn)象的出現(xiàn),水體中不具耐藥性的菌株將被抗生素殺滅,使得這些菌株在環(huán)境中越來(lái)越少,而具有耐藥性的優(yōu)勢(shì)菌將逃脫抗生素的作用得以大量繁殖,耐藥菌感染生物體激發(fā)新型抗生素的研制,新型抗生素的大量廣泛使用又致使菌株進(jìn)一步發(fā)生突變產(chǎn)生新的耐

21、藥菌,從而使得微生物群落組成不斷發(fā)生改變,最終將導(dǎo)致微生態(tài)系統(tǒng)固有的平衡被打破而引發(fā)更嚴(yán)重的危害。對(duì)人類安康的影響水體中抗生素的污染將直接或間接地影響到人類的安康。具體表達(dá)為通過(guò)污染飲用水或動(dòng)植物食品被人體攝入富集,直接引發(fā)過(guò)敏反響、三致毒性或間接致使人體菌群失調(diào)及耐藥菌的傳入而引發(fā)潛在危害。由于污水處理系統(tǒng)的不完善及動(dòng)植物養(yǎng)殖中抗生素的濫用致使抗生素在飲用水和動(dòng)植物食品中造成蓄積和殘留,這些殘留的抗生素隨食物被人體攝入,繼而在人體中不斷積聚,有些將直接引起個(gè)體的過(guò)敏反響甚至食物中毒;有些則影響人體免疫系統(tǒng)降低免疫力;甚至研究發(fā)現(xiàn)局部抗生素還將引發(fā)致畸、致癌、致突變或分泌干擾等不良反響。例如,

22、飲用水中檢出的一些喹惡琳類和硝基咪唑類抗生素可干擾動(dòng)物體細(xì)胞有絲分裂,具潛在致畸、致癌、致突變風(fēng)險(xiǎn)。鏈霉素有誘發(fā)基因突變而致畸的危險(xiǎn)。長(zhǎng)期大量使用磺胺類抗生素(如磺胺二甲嘧啶)能誘發(fā)嚙齒類動(dòng)物甲狀腺增生而引發(fā)腫瘤。水體中殘留的抗生素隨食物鏈持續(xù)進(jìn)入人體還將對(duì)人類消化道、口腔、呼吸道等系統(tǒng)中的正常菌群造成不良影響。這些系統(tǒng)中往往寄生有多種細(xì)菌,這些細(xì)菌相互制約維持著菌群的平衡。假設(shè)長(zhǎng)期接觸抗生素,敏感菌將持續(xù)被抑制或殺滅,而非敏感菌則不斷繁殖,從而造成菌群失調(diào),*些致病菌(如腸道中的大腸桿菌)將趁機(jī)增殖而繼發(fā)感染。此外,水體抗生素污染誘發(fā)的耐藥菌也可能隨飲用水或食物繼而轉(zhuǎn)入人體,給人類安康帶來(lái)威

23、脅。對(duì)水生動(dòng)植物的影響抗生素污染物在水體中的長(zhǎng)期殘存將對(duì)水生的動(dòng)植物(如藻類、浮游動(dòng)物、魚(yú)類和兩棲動(dòng)物等)的生長(zhǎng)繁殖甚至生存造成負(fù)面影響。大量研究顯示,藻類對(duì)抗生素的敏感性非常強(qiáng),尤其是微藻類和藍(lán)綠類(如銅綠微囊藻),水體中微量抗生素的短期暴露就會(huì)影響這些藻類的生長(zhǎng)。水中一些高等植物在長(zhǎng)期接觸抗生素污染之后其生長(zhǎng)也會(huì)受到影響。Brain等研究發(fā)現(xiàn),抗生素能干擾葉綠素蛋白質(zhì)的合成,抑制水生高等植物浮萍圓瘤的生長(zhǎng),毒性表現(xiàn)最明顯的是氟喹諾酮類、磺胺類和四環(huán)素類抗生素。Martins等研究水體抗生素污染對(duì)水生野生動(dòng)植物的生態(tài)毒性,考察環(huán)丙沙星對(duì)水生植物月牙藻和浮萍的生長(zhǎng)影響,對(duì)浮游動(dòng)物大型蚤的生存繁

24、殖影響,以及對(duì)魚(yú)類中食蚊魚(yú)的生存影響。結(jié)果顯示,較高濃度環(huán)丙沙星的短期暴露對(duì)月牙藻和浮萍的生長(zhǎng)毒性明顯高于大型蚤和食蚊魚(yú),在此急性毒性實(shí)驗(yàn)中食蚊魚(yú)未表現(xiàn)出急性毒性。此外,大型蚤的長(zhǎng)期實(shí)驗(yàn)數(shù)據(jù)顯示,低濃度環(huán)丙沙星的長(zhǎng)期暴露對(duì)大型蚤的生存繁殖造成了危害。雖然抗生素對(duì)魚(yú)類的直接危害不明顯,但是一些脂溶性強(qiáng)的抗生素會(huì)富集在魚(yú)類或兩棲動(dòng)物體,對(duì)其造成長(zhǎng)期的潛在毒性,并可能通過(guò)食物鏈而危及人類安康。1.3水體抗生素污染治理技術(shù)隨著水體中抗生素污染水平的不斷升高,抗生素去除方法的研究引起了國(guó)外的廣泛關(guān)注。由于大局部傳統(tǒng)污水處理廠或飲用水處理廠并未設(shè)計(jì)專門(mén)針對(duì)廢水中強(qiáng)極性污染物的處理方法。因此,目前最經(jīng)濟(jì)可行

25、的污染控制手段就是通過(guò)減少抗生素的日用量來(lái)減排。然而,除此之外,有效治理環(huán)境中抗生素的新技術(shù)和新方法的開(kāi)發(fā)和應(yīng)用也極其重要。目前水體中抗生素污染物的去除方法可以借鑒有機(jī)污染物的各種物理和化學(xué)處理技術(shù),例如:化學(xué)氧化和生物降解(破壞性方法);吸附、液相萃取和膜濾技術(shù)(非破壞性方式)等。具體方式的選用可以根據(jù)水中抗生素的污染水平和處理本錢(qián)來(lái)選擇。傳統(tǒng)水處理技術(shù)傳統(tǒng)的水處理技術(shù)主要有生化處理、砂濾和凝結(jié)絮凝沉降等,這些方法被廣泛用在污水或飲用水處理廠來(lái)處理凈化水質(zhì)。生化處理法在生化處理系統(tǒng)中,活性污泥技術(shù)使用較為廣泛,該技術(shù)主要用于工業(yè)廢水的處理。該方法常采用有氧或厭氧方法在活性污泥池過(guò)調(diào)控溫度和化

26、學(xué)耗氧量來(lái)實(shí)現(xiàn)有機(jī)化合物的降解或去除。由于廢水中許多高毒性的污染物對(duì)生化處理過(guò)程中使用的微生物有一定的抵抗性和毒性,因此,生化法在高濃度污染廢水處理方面受到了一定的限制。然而,這種方法在大流量低濃污水的處理方面能發(fā)揮一定的作用。如果污染物對(duì)所選用的微生物的毒性非常低,則生化法可以成為理想的廢水處理方法。 *u等選取8種主要用于人類醫(yī)療的抗生素考察他們?cè)谖覈?guó)南部珠江三角洲4家廢水處理廠的轉(zhuǎn)歸和消除情況,研究發(fā)現(xiàn),這8種抗生素中有5種經(jīng)處理后仍被頻繁檢出,分別為氧氟沙星、諾氟沙星、羅紅霉素、紅霉素H20(紅霉素主要降解產(chǎn)物)和磺胺甲惡唑,他們的濃度在處理前后分別是101978 ngL和9,-205

27、4 ngL,處理根本無(wú)效。此外,這5種檢出最頻繁的抗生素在這4家廢水處理廠的終端出水和淤泥中日總量在O5 g至828 g之間,每日的差異非常大。砂濾法砂濾法是指采用顆粒介質(zhì)(沙粒、煤炭、硅藻土、粒狀活性炭等)過(guò)濾去除廢水中的固體微粒尤其是懸浮性固體微粒的方法。較大顆粒一般可以通過(guò)過(guò)濾介質(zhì)孔隙截留的方式從廢水中脫除,然而,小粒子則需到達(dá)介質(zhì)外表,依靠粒子與過(guò)濾介質(zhì)產(chǎn)生的靜電引力、化學(xué)結(jié)合或吸附等作用實(shí)現(xiàn)脫除。Stackelberg等【53研究傳統(tǒng)飲用水處理技術(shù)對(duì)藥物的去除能力,發(fā)現(xiàn)顆?;钚蕴康纳盀V過(guò)程能實(shí)現(xiàn)53的藥物去除率,此過(guò)程主要通過(guò)吸附原理實(shí)現(xiàn)。砂濾法一般無(wú)法對(duì)污染物進(jìn)展降解,隨著砂濾的進(jìn)

28、展,污染物在過(guò)濾介質(zhì)上不斷富集,當(dāng)介質(zhì)中污染物濃度到達(dá)一定閾值后污染物有可能從介質(zhì)上脫離而對(duì)水造成再次污染。凝結(jié)絮凝沉淀法傳統(tǒng)的廢水處理技術(shù)中也常使用凝結(jié)絮凝沉淀過(guò)程來(lái)凈化水質(zhì)。該方法一般采用在廢水中引入化學(xué)物質(zhì)來(lái)促進(jìn)固體沉降,通過(guò)污染物沉淀或形成膠體而使污染物與廢水發(fā)生脫離。最常引入的化學(xué)物質(zhì)有石灰、明礬、鐵鹽和聚合物等。但這些技術(shù)都需要后續(xù)處理,以使凝結(jié)形態(tài)的污染物最終從廢水中去除。 Stackelberg等研究顯示傳統(tǒng)飲用水處理技術(shù)中凝結(jié)絮凝沉淀過(guò)程對(duì)藥物的凈化率僅15。近10年來(lái),多種傳統(tǒng)水處理技術(shù)已被用于環(huán)境介質(zhì)中抗生素污染物的治理。Vieno等研究河水中檢出的多種藥物在小規(guī)模飲用水

29、處理廠的去除情況,研究發(fā)現(xiàn),凝結(jié)沉降和快速砂濾后藥物的平均去除率僅有13,有效地消除過(guò)程發(fā)生在后續(xù)的臭氧氧化階段,而最后的兩級(jí)顆粒活性炭濾過(guò)對(duì)親水性強(qiáng)的環(huán)丙沙星等濾除效果不理想。在整個(gè)處理過(guò)程中,大局部藥物能被去除至限定濃度以下,僅環(huán)丙沙星對(duì)各階段的處理不敏感,去除效果最差。由此可見(jiàn),傳統(tǒng)的水處理技術(shù)對(duì)抗生素的去除效率很有限,正逐漸被其他更有效的新技術(shù)所取代。氯化氧化法因其低本錢(qián)性,氯氣或次氯酸鹽被自來(lái)水廠頻繁地用于飲用水的殺菌消毒。氯氣或次氯酸鹽常在水的后續(xù)處理過(guò)程中參加,使飲用水在分配過(guò)程中保存一定的殺菌能力。然而,一些研究指出這種氯化處理法也可用作含藥廢水生化處理的預(yù)處理,將藥物氧化后提

30、高含藥廢水的可生化性、降低毒性。氯化氧化法中使用的活性氯主要有次氯酸鹽(CIO一)、氯氣(C12)和二氧化氯(C102)。其中C10具有最高的標(biāo)準(zhǔn)氧化電位(Eo-148 V),其次是C12(Eo_136V)和C102(E0_O95 V)。當(dāng)pH4時(shí),C12在水中能充分水解,這時(shí)主要的活性氯為HOCI和C10-155J。一般認(rèn)為水處理過(guò)程中氯的主要活性形式為HOCl。HOCI具有強(qiáng)的氧化能力,可與有機(jī)化合物發(fā)生氧化反響或親電子取代反響。但是,當(dāng)這些活性氯與芳香環(huán)、中性胺和雙鍵發(fā)生反響后會(huì)產(chǎn)生具有潛在致癌活性的鹵化有機(jī)化合物(例如,三鹵甲烷和鹵乙酸)。C102常被用來(lái)取代C10。和C12。C102

31、氧化有機(jī)物后不會(huì)生成三氯甲烷,而且它在氧化微量污染物時(shí)選擇性很強(qiáng),常通過(guò)自由基反響氧化降解有機(jī)污染物。Acero等考察pH對(duì)阿莫西林等抗生素在氯化氧化過(guò)程中的影響,結(jié)果顯示阿莫西林在整個(gè)pH考察圍(pH 312)均表現(xiàn)出較高的反響速率。Navalon等研究C102在青霉素、阿莫西林和頭孢羥氨芐這三種D酰胺類抗生素的氯化過(guò)程中的作用,結(jié)果發(fā)現(xiàn)抗生素的去除與C102的參加量呈正相關(guān),因構(gòu)造差異青霉素與C102反響緩慢,而阿莫西林和頭孢羥氨芐因含對(duì)苯二酚和4取代苯酚構(gòu)造在中性及堿性pH條件下均與C102顯示出高活性。而且,與傳統(tǒng)的不加C102的氯化處理相比,用C102預(yù)處理后可以降低三氯甲烷產(chǎn)生的風(fēng)

32、險(xiǎn)。然而,從已有的文獻(xiàn)研究中可以看出,氯化法一般僅能有效降解有機(jī)質(zhì)含量低的水中的抗生素,例如飲用水中的抗生素,而且其降解速度常受到pH值的影響,在降解污染物時(shí)還容易生成潛在致癌毒性的氯代有機(jī)物。因此,這種方法已經(jīng)逐漸被高級(jí)氧化技術(shù)所取代。高級(jí)氧化技術(shù)由于抗生素對(duì)微生物的抑制作用,含抗生素的廢水在傳統(tǒng)生化處理過(guò)程中存在特有的頑固性,處理效果無(wú)法到達(dá)預(yù)期水平。基于自由基氧化的高級(jí)氧化技術(shù)(Advanced O*idation Processes,AOPs),由于其突出的高活性和低選擇性,目前被廣泛用于環(huán)境中有機(jī)污染物的治理,在水體抗生素的降解方面亦發(fā)揮著重要的作用。 AOPs能產(chǎn)生大量的活性自由基

33、,例如羥自由基(0H),OH具有優(yōu)于傳統(tǒng)氧化劑的高標(biāo)準(zhǔn)氧化電位(E。_28 V),在氧化降解有機(jī)物方面表達(dá)出極強(qiáng)的優(yōu)勢(shì)。能產(chǎn)生高活性自由基的強(qiáng)氧化劑主要有臭氧(03)或過(guò)氧化氫(H202),通常結(jié)合金屬或半導(dǎo)體催化以及UV光照可迸一步促進(jìn)自由基的生成。高活性自由基在水中能與許多高分子有機(jī)物發(fā)生反響,并能引發(fā)和傳遞鏈反響進(jìn)展,將高毒性難降解的有機(jī)大分子氧化分解為低毒、可生化降解、易消除的中間體,甚至徹底礦化為C02和H20。然而,AOPs在實(shí)際處理廢水過(guò)程中,常無(wú)法理想地實(shí)現(xiàn)污染物的完全礦化,有時(shí)降解生成的中間產(chǎn)物可能具有比母體污染物更強(qiáng)的毒性。目前常用于高效氧化降解水體污染物的高級(jí)氧化技術(shù)主要

34、有化學(xué)氧化法、光催化氧化法、Fenton和類Fenton法、半導(dǎo)體光催化氧化法、電化學(xué)氧化法以及組合聯(lián)用技術(shù)。工藝常選用03、H202,結(jié)合光照,或組合金屬及半導(dǎo)體光催化劑等來(lái)實(shí)現(xiàn)。化學(xué)氧化法化學(xué)氧化法是基于03、H202、C102、KMn04等氧化劑產(chǎn)生OH等高活性自由基高效氧化降解環(huán)境中有機(jī)污染物的方法。降解效果可通過(guò)調(diào)節(jié)體系中氧化劑的種類、參加量、作用時(shí)間、體系pH和溫度等來(lái)控制。1.3.3.1.1 O3氧化臭氧是一種能夠直接或間接氧化有機(jī)物的強(qiáng)氧化劑(E。=207 V)。一方面,臭氧分子可以直接與含有C=C雙鍵、芳環(huán)或氮、磷、氧、硫原子的目標(biāo)化合物發(fā)生氧化反響,這種強(qiáng)選擇性的與親核分子

35、發(fā)生的直接氧化不屬于AOPs。另一方面,臭氧可以通過(guò)在水中分解形成羥自由基而間接引發(fā)氧化反響的產(chǎn)生(AOPs過(guò)程)。這種基于自由基引發(fā)的臭氧氧化技術(shù)由于其低選擇性在處理高波動(dòng)性流量和污染物組成復(fù)雜的廢水過(guò)程中表達(dá)出極大的優(yōu)勢(shì)。然而,該技術(shù)在使用過(guò)程中也存在設(shè)備及維修本錢(qián)高、能耗大等缺陷。此外,傳質(zhì)阻力也是臭氧氧化過(guò)程中的一個(gè)關(guān)鍵因素。該技術(shù)首先需要臭氧分子從氣相轉(zhuǎn)移到液相,然后再在液相中生成自由基進(jìn)而引發(fā)氧化反響降解有機(jī)分子,而大多情況下,單位體積液相中臭氧消耗量很高。所以,臭氧分子從氣相向液相的傳質(zhì)速度常常直接影響有機(jī)物的降解效果及操作本錢(qián)。此外,臭氧氧化的效率還受到液相體系中有機(jī)物、懸浮物

36、、碳酸鹽、碳酸氫鹽、氯離子、pH條件和溫度等因素的影響。多項(xiàng)研究表,在含抗生素的廢水處理過(guò)程中引入臭氧,雖然COD去除率較高,但礦化率一般很低,即使延長(zhǎng)處理時(shí)間也無(wú)法有效實(shí)現(xiàn)理想地礦化。抗生素的臭氧降解率與pH條件直接相關(guān),降解率隨著pH的升高而增加,這主要是由于高的pH環(huán)境能促進(jìn)臭氧在水中分解產(chǎn)生羥自由基。如果無(wú)法有效控制pH條件,例如羧酸增加使pH下降,反響過(guò)程將受到很大影響。在臭氧氧化降解抗生素過(guò)程中,如果無(wú)法徹底礦化,常會(huì)引入許多降解中間產(chǎn)物,這些中間產(chǎn)物的毒性或抑菌性有些低于母體抗生素,有些差異不明顯,而有些則被證實(shí)明顯高于母體。這些毒性的變化情況常常取決于被處理的對(duì)象抗生素的種類。

37、為促進(jìn)活性自由基的產(chǎn)生,常將臭氧結(jié)合UV光照、過(guò)氧化氫(H202)或催化劑聯(lián)合用于有機(jī)廢水的氧化降解。1.3.3.1.2 03+UV UV光照可以促進(jìn)03分子在水中分解產(chǎn)生H202。一方面,H202可以激發(fā)水中剩余03分解,誘導(dǎo)OH生成;另一方面,H202可以直接被光解產(chǎn)生OH。該技術(shù)中引入的UV光照既可以直接光解局部有機(jī)物,又可以使微量污染物分子更易受OH的攻擊,促進(jìn)氧化降解過(guò)程進(jìn)展,提高降解的速度和程度。1.3.3.1.3 03+H202為增加氧化降解效率,H202也可由外源直接參加03氧化過(guò)程,組成03+H202體系,其OH產(chǎn)生機(jī)理與03+UV技術(shù)一樣(其差異僅在于H202的來(lái)源不同)。

38、該技術(shù)可用于渾濁廢水的處理,少量H202的參加能促進(jìn)污染物的去除(去除率可增加15),并增加廢水的可生化性。然而,過(guò)量的H202可能成為自由基去除劑而不利于氧化過(guò)程進(jìn)展。1.3.3.1.4 03+Hz02+UV同時(shí)結(jié)合UV和H202的臭氧氧化技術(shù)將進(jìn)一步促進(jìn)污染物的高效降解,甚至提高礦化度。Epold等研究顯示,uV光照和H202可有效促進(jìn)臭氧氧化過(guò)程,并最終實(shí)現(xiàn)磺胺甲惡唑的徹底降解。綜上所述,臭氧氧化技術(shù)可應(yīng)用于流速和成分波動(dòng)較大的廢水的處理。然而,該技術(shù)受臭氧傳質(zhì)速率或水中溶解的臭氧量限制,與其他高級(jí)氧化技術(shù)相比,氧化劑用量較大。雖然污染物的降解率高,但礦化率低,導(dǎo)致處理后的廢水生態(tài)毒性變

39、化不大甚至毒性更高,且氧化過(guò)程pH依賴性極強(qiáng),需較高的堿性環(huán)境。此外,該技術(shù)本錢(qián)高、設(shè)備貴、能耗大。因此,該技術(shù)用于污水處理還不是很理想。和類Fenton法 Fenton試劑自1890年提出,是過(guò)氧化氫(H202)和亞鐵離子(Fe2+)的混合溶液,具有很強(qiáng)的氧化性。Fenton氧化反響通??梢栽诰嗪头蔷鄡煞N體系中實(shí)現(xiàn),至今,最常用的是均相系統(tǒng)的Fenton氧化。在均相氧化過(guò)程中,F(xiàn)enton試劑由酸性介質(zhì)中的過(guò)氧化氫和鐵鹽催化劑(Fe2+Fe3+)構(gòu)成。在酸性條件下,H202被Fe2+Fe3+催化產(chǎn)生OH,從而激發(fā)自由基鏈反響,氧化降解有機(jī)污染物。將UV光照或氧氣等引入傳統(tǒng)的Fenton試

40、劑中形成的類Fenton法可有效增強(qiáng)氧化效率。該方法的氧化機(jī)理與傳統(tǒng)Fenton法極其相似。類Fenton法中UV光照的引入可以促進(jìn)Fe2+的再生,并提高OH的產(chǎn)量,而且OH也可直接由H202的UV光解產(chǎn)生(速度較慢)。此外,將太取代UV光照可以極降低本錢(qián)。影響Fenton和類Fenton法氧化能力的因素主要有pH、溫度、催化劑、H202和污染物濃度。其中,pH對(duì)該方法的氧化效果影響最大。當(dāng)pH4時(shí),溶液中活性Fe2+的再生和OH的形成均受到抑制,而且pH過(guò)高還將增強(qiáng)碳酸鹽和碳酸氫鹽離子對(duì)OH的捕獲和去除。因此,F(xiàn)enton氧化的有效pH圍極其狹窄。為克制這一缺陷,可以將催化劑固定,構(gòu)成非均相

41、的Fenton氧化體系。這樣既可以有效擴(kuò)大pH適應(yīng)圍又有利于催化劑的回收。此外,溫度升高一般有利于Fenton和類Fenton的氧化,然而溫度過(guò)高,可能使H202分解為02而降低OH含量。H202的用量太多也會(huì)降低氧化降解效果。 Fenton和類Fenton法由于多方面的優(yōu)勢(shì),例如試劑本錢(qián)低、易得、無(wú)毒、H202易控制、環(huán)境平安等,在抗生素污染物治理方面得到了廣泛地應(yīng)用。研究Fenton試劑氧化降解阿莫西林的結(jié)果顯示,在最正確條件:H202、鐵和阿莫西林用量分別為255、25和105 mgL情況下,25 min可實(shí)現(xiàn)阿莫西林的完全降解,15 min阿莫西林可礦化371711。比擬Fenton法

42、和類Fenton法去除磺胺噻唑的研究說(shuō)明,192 mgmolL Fe2+和1856 mgmolL H202構(gòu)成的Fenton法與Fe2+、H202用量較低(分別為157、1219 mgmolL)的UV-類Fenton法比擬,磺胺噻唑降解率在8 min后均達(dá)90左右,但60 min后的TOC去除率Fenton法僅30,類Fenton法則達(dá)75,由此說(shuō)明,類Fenton法的效果優(yōu)于Fenton法。此外,為降低本錢(qián),用太取代UV光的類Fenton法研究越來(lái)越多。Trovo等用太類Fenton法催化降解去離子水介質(zhì)和海水介質(zhì)中的磺胺甲惡唑,結(jié)果顯示磺胺甲惡唑在兩種介質(zhì)中的降解中間產(chǎn)物和礦化率明顯不同,

43、在去離子水中磺胺甲惡唑用光Fenton處理后對(duì)大型虱的生物毒性從85降到20,而海水介質(zhì)中的磺胺甲惡唑盡管礦化率有45,但對(duì)費(fèi)氏弧菌的毒性卻從16增加到86。綜上所述,類Fenton法的降解效果似乎優(yōu)于Fenton法,但類Fenton法不適用于高有機(jī)質(zhì)含量廢水的處理,例如高COD的城市污水、醫(yī)院污水和制藥廢水等,原因可能是由于廢水的渾濁阻礙了光的透過(guò)而影響了催化效果。而Fenton法雖然降解率和礦化率較低,但在處理此類廢水時(shí)可能更具優(yōu)勢(shì)??傊?,F(xiàn)enton和類Fenton法主要適用于處理低COD含量的水體,而不適用于處理高離子濃度水體(例如海水),因?yàn)镃1。、N03、C032-和HC03等離子

44、都是OH的捕獲劑。此外,pH的調(diào)控也是Fenton和類Fenton法在應(yīng)用過(guò)程中的關(guān)鍵。光解法光解是由自然或人造光源引起的化合物分解或離解的過(guò)程,常分為直接和間接光解兩種。直接光解主要為有機(jī)化合物吸收UV光或與水介質(zhì)中物質(zhì)發(fā)生反響的自降解。間接光解則是由光敏物質(zhì)(O、OH和02H等自由基)催化誘導(dǎo)的光降解p6I。間接光解中的這些自由基可由水體中的腐殖質(zhì)或無(wú)機(jī)物誘導(dǎo)產(chǎn)生,也可由外源引入的H202或03產(chǎn)生。盡管直接和間接光解可同時(shí)發(fā)生,但通常間接光解是有機(jī)污染物降解的主要途徑。光解效果主要取決于目標(biāo)化合物的光譜吸收、光照強(qiáng)度和頻率、H202或03參加量以及廢水類型等。只有光敏物質(zhì)才會(huì)在光作用下發(fā)

45、生降解。天然水體中存在的多種物質(zhì)可抑制也可促進(jìn)光解過(guò)程,水體中有機(jī)質(zhì)由于對(duì)自由基的捕獲將抑制光解,而水體中的腐殖質(zhì)或金屬離子等則可促進(jìn)氧化提高光解效率。此外,單一的光照降解通常比結(jié)合H202、03或光催化劑的光解技術(shù)效果差。在處理自然水體中抗生素方面,自然光()誘導(dǎo)的光解被認(rèn)為比人為UV光引發(fā)的光解更具應(yīng)用前景。 LopezPenalver等用UV和UV+H202技術(shù)降解水中四環(huán)素,單一UV誘導(dǎo)的氧化降解速度很慢,而引入H202的uV光解效果明顯提高,四環(huán)素溶液的 TOC含量和中間產(chǎn)物的毒性均降低。Trovo等研究磺胺甲惡唑在不同水介質(zhì)中的光解效果及降解產(chǎn)物毒性。海水介質(zhì)中磺胺甲惡唑的降解速率

46、比去離子水介質(zhì)中的速度低,在模擬自然光源照射下磺胺甲惡唑全部降解,但降解的中間產(chǎn)物毒性明顯增加,對(duì)大型虱的繁殖抑制從60增加到100。相比上述其他高級(jí)氧化技術(shù)而言,光解法對(duì)含抗生素污染物的水體處理效果不是很好,目前該方法主要用于含光敏污染物以及低COD值的河水和飲用水的處理。半導(dǎo)體光催化技術(shù)半導(dǎo)體光催化技術(shù)來(lái)源于二氧化鈦(Ti02)電極上光誘導(dǎo)水分解現(xiàn)象。研究發(fā)現(xiàn),發(fā)光的半導(dǎo)體粒子可以催化大量有機(jī)或無(wú)機(jī)化合物的氧化復(fù)原反響。半導(dǎo)體光催化的氧化降解反響通常需要滿足三個(gè)根本要素:催化光敏外表(例如,具代表性的無(wú)機(jī)半導(dǎo)體Ti02);光能量源;適宜的氧化劑。該技術(shù)的關(guān)鍵在于半導(dǎo)體在人造或自然光源下的激

47、活。半導(dǎo)體光催化劑具有特殊的能帶構(gòu)造,即在價(jià)帶和導(dǎo)帶之間存在一個(gè)禁帶(帶隙),當(dāng)吸收的光子能量高于帶隙能量時(shí)將促進(jìn)價(jià)帶電子向?qū)Оl(fā)生帶間躍遷,伴隨產(chǎn)生光生電子(e一)和價(jià)帶空穴(h+)。價(jià)帶空穴具極高氧化潛能,可使吸附于半導(dǎo)體外表的水分子或氫氧根離子氧化生成OH。另外,產(chǎn)生的光生電子被溶液中半導(dǎo)體外表的溶解氧捕獲而產(chǎn)生超氧自由基(02。),02一繼而轉(zhuǎn)變成H202,H202同樣可以捕獲電子而再次產(chǎn)生OH。高活性的OH繼而使吸附于半導(dǎo)體外表的化合物被氧化降解或徹底礦化。半導(dǎo)體光催化劑誘導(dǎo)的氧化降解可分為五個(gè)主要步驟:反響物由液相轉(zhuǎn)移至催化劑外表;催化劑吸附反響物;在吸附相中發(fā)生氧化降級(jí)反響;降解

48、產(chǎn)物從催化劑外表脫附;降解產(chǎn)物脫離催化劑外表進(jìn)入液相。其氧化機(jī)制目前認(rèn)為不完全是由單一羥自由基引發(fā)的氧化,其他氧自由基也可能同時(shí)存在并發(fā)揮著作用。光催化過(guò)程主要受到催化劑種類和濃度、光照波長(zhǎng)和強(qiáng)度、pH和溶液介質(zhì)等因素影響。在工業(yè)應(yīng)用過(guò)程中該方法雖然有以自然條件下的作為光源的優(yōu)勢(shì)但仍存在廢水中不溶性顆粒對(duì)光透過(guò)的阻礙及后續(xù)光催化劑的回收困難等缺陷。廢水處理后粉末狀光催化劑回收費(fèi)時(shí)、本錢(qián)高、有時(shí)濾除不完全,假設(shè)將粉狀半導(dǎo)體光催化劑固定則可克制此缺陷。理想的光催化劑固定材料需要滿足以下條件:對(duì)光催化劑有強(qiáng)的粘附力,高比外表積,對(duì)污染物有強(qiáng)的吸附作用,不影響光催化活性,易從液相移除等。目前研究的固定

49、材料主要有玻璃、硅膠、金屬、瓷、聚合物、沸石、鋁粘土和活性炭等。然而光催化劑固定系統(tǒng)也存在一些缺陷,例如相比傳統(tǒng)粉狀光催化劑而言其有效比外表積減少及傳質(zhì)限制等。研究顯示,Ti02可以光催化氧化奧索利酸并使其降解為更易氧化、無(wú)抗菌活性、低毒的代中間產(chǎn)物。外源引入H202的UV+H202+Ti02光催化體系可有效降解水中阿莫西林、氨芐西林和氯唑西【83】??梢?jiàn)光誘導(dǎo)的鍶摻雜pBi203光催化降解四環(huán)素,120 min四環(huán)素降解912,毒性降低906,比直接光解(毒性降低70)和Ti02光催化降解(毒性降低80)表達(dá)出更強(qiáng)的環(huán)境友好優(yōu)勢(shì)從污染物的去除效率來(lái)看,半導(dǎo)體光催化降解技術(shù)對(duì)有機(jī)質(zhì)含量低的水體

50、(河水、地下水和飲用水)的處理似乎很有前景。然而,盡管該技術(shù)已研究數(shù)十年且已有大量文獻(xiàn)報(bào)道,但還未實(shí)際應(yīng)用于水或污水的處理。電化學(xué)法電化學(xué)法因方法有效、適應(yīng)性強(qiáng)、能耗低、易操作和清潔等優(yōu)勢(shì)廣泛用于環(huán)境有機(jī)污染物的處理。電化學(xué)氧化降解技術(shù)可分為直接氧化和間接氧化兩種。在電化學(xué)直接氧化降解過(guò)程中,其氧化反響常發(fā)生在含電解質(zhì)溶液的陽(yáng)極端(石墨、Ti02、鈦合金、釕或銥氧化物、摻硼金剛石等),污染物首先被吸附于陽(yáng)極外表,然后通過(guò)陽(yáng)極的電子交換直接被降解。間接的電化學(xué)氧化降解則是以溶液中的電活性物質(zhì)為媒介,在電極和污染物之間傳遞電子而氧化降解污染物,其常用的電活性媒介有金屬氧化復(fù)原對(duì)A92+、Fe3十、

51、Ce4+和Mn3+等,或強(qiáng)氧化劑H202、03、過(guò)硫酸鹽、過(guò)碳酸鹽、過(guò)磷酸鹽和氯等。直接還是間接的電化學(xué)氧化過(guò)程主要由電極材料、實(shí)驗(yàn)條件和電解質(zhì)組分來(lái)決定,但均要防止電極的污染。直接的電化學(xué)氧化反響常取決于電極的催化活性、污染物向陽(yáng)極活性部位的擴(kuò)散速率和所用電流強(qiáng)度,而問(wèn)接的電化學(xué)氧化過(guò)程則主要取決于二級(jí)氧化劑在溶液中的擴(kuò)散速率、溫度和pH條件。Oturan等選用不同的陽(yáng)極和陰極材料考察電化學(xué)氧化法和電化學(xué)Fenton法降解四環(huán)素的效果,結(jié)果顯示在電化學(xué)氧化過(guò)程中選用碳?xì)株帢O比不銹鋼陰極效果更好,選用鈦基摻硼金剛石電極為陽(yáng)極在電化學(xué)氧化和電化學(xué)Fenton兩種體系中均表現(xiàn)出極高的氧化和礦化能力

52、,四環(huán)素溶液的TOC去除率均達(dá)98。Miyata等選用TiIr02電極降解畜牧養(yǎng)殖廢水中的四環(huán)素類抗生素,反響6 h后藥物濃度從100 mgL下降到06 mgL。電化學(xué)氧化法在處理高抗生素含量廢水或高COD制藥廢水等有毒廢水方面可能表達(dá)出優(yōu)勢(shì)。然而,目前該方法的實(shí)際應(yīng)用還局限于低流量廢水的處理。此外,電反響器的高本錢(qián)也限制了其應(yīng)用。膜別離技術(shù)基于高效截留性能的膜別離技術(shù)被廣泛用于廢水的深度處理。該技術(shù)通常不會(huì)使污染物降解或消除,而是直接依靠膜的截留能力使污染物從水中別離富集于膜外表或孔中。目前常用的膜別離技術(shù)有反滲透、納濾、超濾等。反滲透反滲透技術(shù)常用于水分子或離子的去除。在選擇性半滲透膜的一

53、側(cè)施加壓力,該壓力克制因膜兩測(cè)溶液濃度差而產(chǎn)生的滲透壓,使水從含污染物的高濃度一側(cè)向純水一側(cè)轉(zhuǎn)移,從而實(shí)現(xiàn)水的凈化。該技術(shù)可有效去除水中的絕大局部離子,但在去除有機(jī)污染物方面還存在一定的局限。選擇性半滲透膜是反滲透技術(shù)的關(guān)鍵之一,該膜一般只允許水透過(guò)而不允許離子或大分子透過(guò)。反滲透膜的化學(xué)性質(zhì)和物理構(gòu)造(孔隙率、機(jī)械強(qiáng)度等)直接決定了膜的特性及反滲透的效果。反滲透技術(shù)中的反滲透膜必需能耐受化學(xué)或微生物的侵蝕,具足夠的機(jī)械強(qiáng)度,在較長(zhǎng)時(shí)間使用過(guò)程中能保證構(gòu)造的穩(wěn)定等。常使用的主要是聚合物膜。反滲透技術(shù)在能耗上僅需一個(gè)電動(dòng)水泵,無(wú)需熱能,構(gòu)造簡(jiǎn)單,能量利用率高。然而,其反滲透膜易被污染或損壞,膜還

54、可能被氧化劑氧化。相較其他水處理技術(shù),反滲透的別離過(guò)程緩慢,處理時(shí)間長(zhǎng)。多孔的反滲透膜可以有效截留大分子,在別離大分子抗生素方面效果很好,但小分子的抗生素常需要較小的膜孔徑,而膜孔徑的減小易造成膜通量下降,濾過(guò)壓力增加,此外,小分子物質(zhì)還可能引起膜的堵塞。因此,反滲透技術(shù)在實(shí)際應(yīng)用時(shí)常用活性炭過(guò)濾器等來(lái)輔助。Gholami等用反滲透技術(shù)處理合成類制藥廢水中的氨芐西林和阿莫西林,通過(guò)響應(yīng)面試驗(yàn)分析pH、溫度、抗生素濃度等因素對(duì)別離效果的影響,結(jié)果顯示反滲透法對(duì)兩種抗生素的去除率均達(dá)95,別離機(jī)制主要是多孔膜的尺寸排阻效應(yīng)。超濾、納濾基于超濾膜或納米膜別離的超濾、納濾也常用于水中污染物的凈化。超濾

55、法以超濾膜為過(guò)濾介質(zhì),以膜兩側(cè)的壓力差為驅(qū)動(dòng)力,用于濾除水中膠體大小的污染物或顆粒,其超濾膜常密布許多細(xì)小微孔,小分子物質(zhì)一般無(wú)法被濾除。納濾法則以納米膜為過(guò)濾介質(zhì),以膜一側(cè)施加的介于反滲透和超濾之間的壓力為驅(qū)動(dòng)力,用于濾除水中納米級(jí)顆?;蚍肿恿繛閿?shù)百的有機(jī)小分子。超濾膜和納濾膜常因含羧酸或磺胺基團(tuán)而荷電,因此,水中的離子(無(wú)機(jī)鹽或解離的有機(jī)物)也可由靜電作用被濾除。超濾和納濾的濾過(guò)機(jī)理主要有膜外表機(jī)械篩分、膜孔尺寸排阻、以及膜外表和膜孔的吸附等。與反滲透相比,納濾和超濾對(duì)單價(jià)離子(Na+、K+、C1等)和分子量低于200的有機(jī)物濾除效果較差,但對(duì)二價(jià)或多價(jià)離子及分子量大于200的有機(jī)物則具有

56、較高的脫除率。Derakhsheshpoor等合成的高滲透性聚丙烯納濾膜可有效截留制藥廢水中阿莫西林。Zhao等選用四種納濾膜濾除廢水中螺旋霉素,考察操作因素對(duì)濾除效果的影響,結(jié)果說(shuō)明,增加操作壓力可同時(shí)提高膜通量和螺旋霉素截留率,溫度提高僅有利于流量提高,廢水中陰陽(yáng)離子的存在對(duì)螺旋霉素的濾除有競(jìng)爭(zhēng)抑制作用,各種陽(yáng)離子的抑制能力M92+Ca2+K+,各種陰離子的抑制作用N03一CI一S04二。反滲透、納濾和超濾聯(lián)用反滲透、納濾和超濾這三種膜別離技術(shù)也常聯(lián)合使用。Dolar等聯(lián)用納米膜和反滲透膜過(guò)濾別離不同水體中的獸用抗生素,膜孔的尺寸排阻和靜電排斥是膜別離的主要機(jī)制。Lipp等用納濾和反滲透濾

57、除飲用水中微量污染物,分子量大于300的污染物截留率達(dá)90,分子量在100200之間的污染物截留效果因膜類型的不同波動(dòng)很大,其中,藥物和抗生素類污染物的截留率大于60。 He等列聯(lián)合納濾和超濾用于紅霉素發(fā)酵液的濃縮。Radjenovic等研究顯示納濾和反滲透的聯(lián)用可顯著提高大局部藥物的截留率。膜別離技術(shù)將污染物從水體截留富集于濾膜而實(shí)現(xiàn)水體污染物的去除,在實(shí)際應(yīng)用過(guò)程中常結(jié)合其他方法(例如,生化法和高級(jí)氧化技術(shù))用于廢水的治理。反滲透、納濾和超濾過(guò)程對(duì)操作溫度(可顯著影響泵壓和液壓)、自然水體中的有機(jī)質(zhì)和離子強(qiáng)度比擬敏感。此外,濾膜的損壞和濾垢的產(chǎn)生也是該技術(shù)在應(yīng)用過(guò)程中需考慮的問(wèn)題。吸附法吸

58、附法在工業(yè)上被廣泛用于有機(jī)污染物的去除。吸附是指固體物質(zhì)外表周?chē)橘|(zhì)(液體或氣體)中的分子或離子富集于固體外表的現(xiàn)象。具有吸附性能的固體物質(zhì)稱為吸附劑,而被吸附的物質(zhì)稱為吸附質(zhì)。當(dāng)污水與固體吸附劑接觸時(shí),污水中*一污染物或多種污染物向吸附劑周?chē)鷶U(kuò)散并吸附積蓄于吸附劑外表從而與水別離而實(shí)現(xiàn)污染物的脫除。吸附屬于一種傳質(zhì)過(guò)程,由吸附質(zhì)分子從液相向固體吸附劑外表或部的傳質(zhì)構(gòu)成,該過(guò)程主要涉及的步驟依次為:液相擴(kuò)散(膜外擴(kuò)散)吸附質(zhì)分子由液相向吸附劑外表的液膜轉(zhuǎn)移;膜擴(kuò)散吸附質(zhì)分子在液膜移動(dòng);孔道擴(kuò)散吸附質(zhì)分子由液膜向吸附劑外表和或部孔道中的吸附活性位點(diǎn)轉(zhuǎn)移;吸附吸附質(zhì)分子通過(guò)各種作用力與吸附劑的活性

59、部位結(jié)合而完成吸附。根據(jù)吸附質(zhì)和吸附劑結(jié)合時(shí)作用力的性質(zhì)可將吸附分為物理吸附和化學(xué)吸附兩種。物理吸附,又稱德華吸附,其結(jié)合力主要是吸附質(zhì)與吸附劑分子間的德華引力,包括靜電力、誘導(dǎo)力和色散力,結(jié)合力弱,吸附熱小,易脫附,是一種可逆吸附,且吸附極快,瞬間即達(dá)平衡,吸附過(guò)程為放熱反響?;瘜W(xué)吸附,則是由吸附質(zhì)與吸附劑之間化學(xué)鍵的形成而引起,吸附質(zhì)分子與吸附劑外表原子(或分子)發(fā)生電子的轉(zhuǎn)移、交換或共有而形成化學(xué)鍵,結(jié)合力強(qiáng),選擇性高,吸附需熱較大,需要一定的活化能,且吸附較慢,需要較長(zhǎng)時(shí)間才能達(dá)平衡,常為單分子層且不可逆吸附。兩種吸附在同一吸附劑上可能同時(shí)發(fā)生,一般較低溫度下發(fā)生物理吸附,而在較高溫度

60、下發(fā)生化學(xué)吸附,即物理吸附在化學(xué)吸附之前。吸附法屬于一種非破壞性的污染物去除方法,僅使污染物從水體中別離而富集于吸附劑上,而不會(huì)降解污染物,因此,在脫除污水中有機(jī)污染物時(shí),不會(huì)造成因降解不完全而產(chǎn)生高毒性中間代物的風(fēng)險(xiǎn)。此外,相比生化處理和高級(jí)氧化技術(shù),吸附法簡(jiǎn)單易行、本錢(qián)低、平安、污染物脫除效率高,在工業(yè)應(yīng)用方面表達(dá)出極強(qiáng)的優(yōu)勢(shì)。吸附法的吸附脫除效率主要取決于吸附劑的構(gòu)造和外表狀態(tài)(外表積、孔隙率、孔徑、外表荷電性、官能團(tuán)、金屬離子等)以及吸附質(zhì)分子的構(gòu)造和官能團(tuán)性質(zhì)(分子大?。环辑h(huán)、酚羥基、酮羰基、羧基、羥基、醇基等功能團(tuán))等。此外,含處理對(duì)象的不同水體中固有的有機(jī)質(zhì)或離子等也會(huì)影響目標(biāo)污

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論