高等數(shù)學(xué)(下)練習(xí)題和答案_第1頁
高等數(shù)學(xué)(下)練習(xí)題和答案_第2頁
高等數(shù)學(xué)(下)練習(xí)題和答案_第3頁
高等數(shù)學(xué)(下)練習(xí)題和答案_第4頁
高等數(shù)學(xué)(下)練習(xí)題和答案_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高等數(shù)學(xué)一、填空 、選擇題(每題3分,共30分)1曲面上點(diǎn)(1,2,2)處的法線方程為.2.已知D是由直線及所圍,則.3.若曲線L是在第一象限的部分,則 .4.設(shè),則.5.若級數(shù)收斂,則.6.函數(shù),下列說法正確的是( ).(A)點(diǎn)(2,2)是的極小值點(diǎn); (B) 點(diǎn)(0,0)是的極大值點(diǎn);(C) 點(diǎn)(2,2)不是的駐點(diǎn); (D)不是的極值.7.函數(shù)在點(diǎn)(1,1)處沿著那個方向的方向?qū)?shù)最大?( )(A) (1,1); (B) (2,2); (C) (0,1); (D) (1,0).8.曲線L為沿順時針一周,則( ).(A) (B); (C); (D)0.9.累次積分改變積分次序后等于( ).(

2、A); (B);(C); (D).10. 下列各級數(shù)中條件收斂的是( )(A); (B); (C); (D);二解答題(6*4)1.設(shè)函數(shù),求.2.設(shè),求.3.設(shè),求.4. 設(shè)方程所確定的隱函數(shù)求.三 計算題(5*5)1.求,其中D.2.求,其中是曲面及平面所圍成的閉區(qū)域.3.求,其中為曲面在之間的部分.4. 計算曲面積分,其中為曲面在之間部分的下側(cè)。5.求,其中L為沿順時針方向一周.四解答題(5 5 6)1.判別級數(shù)是否收斂?如果收斂,是絕對收斂還是條件收斂?2. 求冪級數(shù)的收斂區(qū)間及和函數(shù),并求3. 將函數(shù)展成(-2)的冪級數(shù)五證明題(5)設(shè)函數(shù)連續(xù),證明: 參考答案一 1. 2.0.因?yàn)榉e分區(qū)域D關(guān)于x軸對稱,被積函數(shù)y是關(guān)于y的奇函數(shù) 3.1. 4. 5.-2. 6.B 7.選(A)或(B)都對. 8. (C)利用格林公式,注意此題中的方向是順時針 9. (B); 10. (A)二 1. 因?yàn)?則,所以.2. 由,得.于是.3. .4. 方程化為,則, ,.且當(dāng)時,所以.三 1. 用極坐標(biāo)計算.2.用柱坐標(biāo)計算.3.這是第一類曲面積分,先求,再明確在面上的投影區(qū)域.下面計算.4. 這是第二類曲面積分,先求明確在面上的投影區(qū)域.且取下側(cè),下面計算.5.利用格林公式,注意方向是順時針.;.四 1.先判別是否絕對收斂.因?yàn)橛杀戎捣?,所以收斂.所以絕對收斂.2.,(-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論