中考數(shù)學(xué)代數(shù)部分知識復(fù)習(xí)總結(jié)_第1頁
中考數(shù)學(xué)代數(shù)部分知識復(fù)習(xí)總結(jié)_第2頁
中考數(shù)學(xué)代數(shù)部分知識復(fù)習(xí)總結(jié)_第3頁
中考數(shù)學(xué)代數(shù)部分知識復(fù)習(xí)總結(jié)_第4頁
中考數(shù)學(xué)代數(shù)部分知識復(fù)習(xí)總結(jié)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、代數(shù)部分一、實(shí)數(shù)的分類:1、有理數(shù):任何一個有理數(shù)總可以寫成的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。2、無理數(shù):初中遇到的無理數(shù)有三種:開不盡的方根,如、;特定結(jié)構(gòu)的不限環(huán)無限小數(shù),如1.101001000100001;特定意義的數(shù),如、等。3、判斷一個實(shí)數(shù)的數(shù)性不能僅憑表面上的感覺,往往要經(jīng)過整理化簡后才下結(jié)論。二、實(shí)數(shù)中的幾個概念1、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。(1)實(shí)數(shù)a的相反數(shù)是 -a; (2)a和b互為相反數(shù)a+b=02、倒數(shù):(1)實(shí)數(shù)a(a0)的倒數(shù)是;(2)a和b 互為倒數(shù);(3)注意0沒有倒數(shù)3、絕對值:(1)一個數(shù)a 的絕對值有以下三種情況:(

2、2)實(shí)數(shù)的絕對值是一個非負(fù)數(shù),從數(shù)軸上看,一個實(shí)數(shù)的絕對值,就是數(shù)軸上表示這個數(shù)的點(diǎn)到原點(diǎn)的距離。(3)去掉絕對值符號(化簡)必須要對絕對值符號里面的實(shí)數(shù)進(jìn)行數(shù)性(正、負(fù))確認(rèn),再去掉絕對值符號。4、n次方根(1)平方根,算術(shù)平方根:設(shè)a0,稱叫a的平方根,叫a的算術(shù)平方根。(2)正數(shù)的平方根有兩個,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根。(3)立方根:叫實(shí)數(shù)a的立方根。(4)一個正數(shù)有一個正的立方根;0的立方根是0;一個負(fù)數(shù)有一個負(fù)的立方根。三、實(shí)數(shù)與數(shù)軸1、數(shù)軸:規(guī)定了原點(diǎn)、正方向、單位長度的直線稱為數(shù)軸。原點(diǎn)、正方向、單位長度是數(shù)軸的三要素。2、數(shù)軸上的點(diǎn)和實(shí)數(shù)的對應(yīng)關(guān)系:數(shù)軸上

3、的每一個點(diǎn)都表示一個實(shí)數(shù),而每一個實(shí)數(shù)都可以用數(shù)軸上的唯一的點(diǎn)來表示。實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對應(yīng)的關(guān)系。四、實(shí)數(shù)大小的比較1、在數(shù)軸上表示兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。2、正數(shù)大于0;負(fù)數(shù)小于0;正數(shù)大于一切負(fù)數(shù);兩個負(fù)數(shù)絕對值大的反而小。五、實(shí)數(shù)的運(yùn)算1、加法:(1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;(2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值??墒褂眉臃ń粨Q律、結(jié)合律。2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。3、乘法:(1)兩數(shù)相乘,同號取正,異號取負(fù),并把絕對值相乘。(2)n個實(shí)數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實(shí)數(shù)相乘,

4、積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)為奇數(shù)個時,積為負(fù)。(3)乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。4、除法:(1)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。(2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。(3)0除以任何數(shù)都等于0,0不能做被除數(shù)。5、乘方與開方:乘方與開方互為逆運(yùn)算。6、實(shí)數(shù)的運(yùn)算順序:乘方、開方為三級運(yùn)算,乘、除為二級運(yùn)算,加、減是一級運(yùn)算,如果沒有括號,在同一級運(yùn)算中要從左到右依次運(yùn)算,不同級的運(yùn)算,先算高級的運(yùn)算再算低級的運(yùn)算,有括號的先算括號里的運(yùn)算。無論何種運(yùn)算,都要注意先定符號后運(yùn)算。六、有效數(shù)字和科學(xué)記數(shù)法1、科學(xué)記數(shù)法:設(shè)N0,

5、則N= a(其中1a10,n為整數(shù))。2、有效數(shù)字:一個近似數(shù),從左邊第一個不是0的數(shù),到精確到的數(shù)位為止,所有的數(shù)字,叫做這個數(shù)的有效數(shù)字。精確度的形式有兩種:(1)精確到那一位;(2)保留幾個有效數(shù)字。例題:例1、已知實(shí)數(shù)a、b在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖所示,且?;啠悍治觯簭臄?shù)軸上a、b兩點(diǎn)的位置可以看到:a0,b0且所以可得:解:例2、若,比較a、b、c的大小。分析:;c0;所以容易得出:abc。解:略例3、若互為相反數(shù),求a+b的值分析:由絕對值非負(fù)特性,可知,又由題意可知:所以只能是:a2=0,b+2=0,即a=2,b= 2 ,所以a+b=0 解:略例4、已知a與b互為相反數(shù),c與

6、d互為倒數(shù),m的絕對值是1,求的值。解:原式=例5、計(jì)算:(1) (2)解:(1)原式=(2)原式=代數(shù)部分第二章:代數(shù)式一、代數(shù)式1、代數(shù)式:用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫代數(shù)式。單獨(dú)一個數(shù)或者一個字母也是代數(shù)式。2、代數(shù)式的值:用數(shù)值代替代數(shù)里的字母,計(jì)算后得到的結(jié)果叫做代數(shù)式的值。3、代數(shù)式的分類:二、整式的有關(guān)概念及運(yùn)算1、概念(1)單項(xiàng)式:像x、7、,這種數(shù)與字母的積叫做單項(xiàng)式。單獨(dú)一個數(shù)或字母也是單項(xiàng)式。單項(xiàng)式的次數(shù):一個單項(xiàng)式中,所有字母的指數(shù)叫做這個單項(xiàng)式的次數(shù)。單項(xiàng)式的系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫單項(xiàng)式的系數(shù)。(2)多項(xiàng)式:幾個單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式的項(xiàng):

7、多項(xiàng)式中每一個單項(xiàng)式都叫多項(xiàng)式的項(xiàng)。一個多項(xiàng)式含有幾項(xiàng),就叫幾項(xiàng)式。多項(xiàng)式的次數(shù):多項(xiàng)式里,次數(shù)最高的項(xiàng)的次數(shù),就是這個多項(xiàng)式的次數(shù)。不含字母的項(xiàng)叫常數(shù)項(xiàng)。升(降)冪排列:把一個多項(xiàng)式按某一個字母的指數(shù)從小(大)到大(?。┑捻樞蚺帕衅饋恚凶霭讯囗?xiàng)式按這個字母升(降)冪排列。(3)同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。2、運(yùn)算(1)整式的加減:合并同類項(xiàng):把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母及字母的指數(shù)不變。 去括號法則:括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項(xiàng)都不變;括號前面是“”號,把括號和它前面的“”號去掉,括號里的各項(xiàng)都變號。 添括

8、號法則:括號前面是“+”號,括到括號里的各項(xiàng)都不變;括號前面是“”號,括到括號里的各項(xiàng)都變號。 整式的加減實(shí)際上就是合并同類項(xiàng),在運(yùn)算時,如果遇到括號,先去括號,再合并同類項(xiàng)。 (2)整式的乘除: 冪的運(yùn)算法則:其中m、n都是正整數(shù) 同底數(shù)冪相乘:;同底數(shù)冪相除:;冪的乘方:積的乘方:。 單項(xiàng)式乘以單項(xiàng)式:用它們系數(shù)的積作為積的系數(shù),對于相同的字母,用它們的指數(shù)的和作為這個字母的指數(shù);對于只在一個單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個因式。 單項(xiàng)式乘以多項(xiàng)式:就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。 多項(xiàng)式乘以多項(xiàng)式:先用一個多項(xiàng)式的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng),再把所得的

9、積相加。 單項(xiàng)除單項(xiàng)式:把系數(shù),同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有字母,則連同它的指數(shù)作為商的一個因式。 多項(xiàng)式除以單項(xiàng)式:把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng),再把所得的商相加。 乘法公式: 平方差公式:;完全平方公式:,三、因式分解 1、因式分解概念:把一個多項(xiàng)式化成幾個整式的積的形式,叫因式分解。 2、常用的因式分解方法: (1)提取公因式法: (2)運(yùn)用公式法:平方差公式:;完全平方公式:(3)十字相乘法:(4)分組分解法:將多項(xiàng)式的項(xiàng)適當(dāng)分組后能提公因式或運(yùn)用公式分解。(5)運(yùn)用求根公式法:若的兩個根是、,則有:3、因式分解的一般步驟:(1)如果多項(xiàng)式的各項(xiàng)有公因式,那

10、么先提公因式;(2)提出公因式或無公因式可提,再考慮可否運(yùn)用公式或十字相乘法;(3)對二次三項(xiàng)式,應(yīng)先嘗試用十字相乘法分解,不行的再用求根公式法。(4)最后考慮用分組分解法。四、分式 1、分式定義:形如的式子叫分式,其中A、B是整式,且B中含有字母。 (1)分式無意義:B=0時,分式無意義; B0時,分式有意義。 (2)分式的值為0:A=0,B0時,分式的值等于0。 (3)分式的約分:把一個分式的分子與分母的公因式約去叫做分式的約分。方法是把分子、分母因式分解,再約去公因式。 (4)最簡分式:一個分式的分子與分母沒有公因式時,叫做最簡分式。分式運(yùn)算的最終結(jié)果若是分式,一定要化為最簡分式。 (5

11、)通分:把幾個異分母的分式分別化成與原來分式相等的同分母分式的過程,叫做分式的通分。 (6)最簡公分母:各分式的分母所有因式的最高次冪的積。 (7)有理式:整式和分式統(tǒng)稱有理式。 2、分式的基本性質(zhì): (1);(2) (3)分式的變號法則:分式的分子,分母與分式本身的符號,改變其中任何兩個,分式的值不變。 3、分式的運(yùn)算: (1)加、減:同分母的分式相加減,分母不變,分子相加減;異分母的分式相加減,先把它們通分成同分母的分式再相加減。 (2)乘:先對各分式的分子、分母因式分解,約分后再分子乘以分子,分母乘以分母。 (3)除:除以一個分式等于乘上它的倒數(shù)式。 (4)乘方:分式的乘方就是把分子、分

12、母分別乘方。五、二次根式 1、二次根式的概念:式子叫做二次根式。 (1)最簡二次根式:被開方數(shù)的因數(shù)是整數(shù),因式是整式,被開方數(shù)中不含能開得盡方的因式的二次根式叫最簡二次根式。 (2)同類二次根式:化為最簡二次根式之后,被開方數(shù)相同的二次根式,叫做同類二次根式。 (3)分母有理化:把分母中的根號化去叫做分母有理化。 (4)有理化因式:把兩個含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個代數(shù)式互為有理化因式(常用的有理化因式有:與;與) 2、二次根式的性質(zhì): (1) ;(2);(3)(a0,b0);(4) 3、運(yùn)算: (1)二次根式的加減:將各二次根式化為最簡二次根式后,合

13、并同類二次根式。 (2)二次根式的乘法:(a0,b0)。 (3)二次根式的除法: 二次根式運(yùn)算的最終結(jié)果如果是根式,要化成最簡二次根式。例題:一、因式分解: 1、提公因式法:例1、分析:先提公因式,后用平方差公式解:略規(guī)律總結(jié)因式分解本著先提取,后公式等,但應(yīng)把第一個因式都分解到不能再分解為止,往往需要對分解后的每一個因式進(jìn)行最后的審查,如果還能分解,應(yīng)繼續(xù)分解。2、十字相乘法:例2、(1);(2)分析:可看成是和(x+y)的二次三項(xiàng)式,先用十字相乘法,初步分解。解:略規(guī)律總結(jié)應(yīng)用十字相乘法時,注意某一項(xiàng)可是單項(xiàng)的一字母,也可是某個多項(xiàng)式或整式,有時還需要連續(xù)用十字相乘法。3、分組分解法:例3

14、、分析:先分組,第一項(xiàng)和第二項(xiàng)一組,第三、第四項(xiàng)一組,后提取,再公式。解:略規(guī)律總結(jié)對多項(xiàng)式適當(dāng)分組轉(zhuǎn)化成基本方法因式分組,分組的目的是為了用提公因式,十字相乘法或公式法解題。4、求根公式法:例4、解:略二、式的運(yùn)算巧用公式 例5、計(jì)算:分析:運(yùn)用平方差公式因式分解,使分式運(yùn)算簡單化。解:略規(guī)律總結(jié)抓住三個乘法公式的特征,靈活運(yùn)用,特別要掌握公式的幾種變形,公式的逆用,掌握運(yùn)用公式的技巧,使運(yùn)算簡便準(zhǔn)確。2、化簡求值:例6、先化簡,再求值:,其中x= 1 y = 規(guī)律總結(jié)一定要先化到最簡再代入求值,注意去括號的法則。3、分式的計(jì)算:例7、化簡分析: 可看成 解:略規(guī)律總結(jié)分式計(jì)算過程中:(1)

15、除法轉(zhuǎn)化為乘法時,要倒轉(zhuǎn)分子、分母;(2)注意負(fù)號4、根式計(jì)算例8、已知最簡二次根式和是同類二次根式,求b的值。分析:根據(jù)同類二次根式定義可得:2b+1=7b。解:略規(guī)律總結(jié)二次根式的性質(zhì)和運(yùn)算是中考必考內(nèi)容,特別是二次根式的化簡、求值及性質(zhì)的運(yùn)用是中考的主要考查內(nèi)容。代數(shù)部分第三章:方程和方程組一、方程有關(guān)概念 1、方程:含有未知數(shù)的等式叫做方程。 2、方程的解:使方程左右兩邊的值相等的未知數(shù)的值叫方程的解,含有一個未知數(shù)的方程的解也叫做方程的根。 3、解方程:求方程的解或方判斷方程無解的過程叫做解方程。 4、方程的增根:在方程變形時,產(chǎn)生的不適合原方程的根叫做原方程的增根。 二、一元方程

16、1、一元一次方程 (1)一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(其中x是未知數(shù),a、b是已知數(shù),a0) (2)一玩一次方程的最簡形式:ax=b(其中x是未知數(shù),a、b是已知數(shù),a0) (3)解一元一次方程的一般步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)和系數(shù)化為1。 (4)一元一次方程有唯一的一個解。 2、一元二次方程 (1)一元二次方程的一般形式:(其中x是未知數(shù),a、b、c是已知數(shù),a0) (2)一元二次方程的解法: 直接開平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的選擇順序是:先特殊后一般,如沒有要求,一般不用配方法。 (4)一元二次方程的根的判別式: 當(dāng)0時方程有兩個不相等的

17、實(shí)數(shù)根; 當(dāng)=0時方程有兩個相等的實(shí)數(shù)根; 當(dāng)0,即原不等式的解集為,解此方程求出a的值。解:略 規(guī)律總結(jié)此題先解字母不等式,后著眼已知的解集,探求成立的條件,此種類型題都采用逆向思考法來解。代數(shù)部分第六章:函數(shù)及其圖像知識點(diǎn):一、平面直角坐標(biāo)系1、平面內(nèi)有公共原點(diǎn)且互相垂直的兩條數(shù)軸,構(gòu)成平面直角坐標(biāo)系。在平面直角坐標(biāo)系內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間建立了一對應(yīng)的關(guān)系。 2、不同位置點(diǎn)的坐標(biāo)的特征: (1)各象限內(nèi)點(diǎn)的坐標(biāo)有如下特征: 點(diǎn)P(x, y)在第一象限x 0,y0; 點(diǎn)P(x, y)在第二象限x0,y0; 點(diǎn)P(x, y)在第三象限x0,y0; 點(diǎn)P(x, y)在第四象限x0,y0。 (2

18、)坐標(biāo)軸上的點(diǎn)有如下特征: 點(diǎn)P(x, y)在x軸上y為0,x為任意實(shí)數(shù)。 點(diǎn)P(x,y)在y軸上x為0,y為任意實(shí)數(shù)。 3點(diǎn)P(x, y)坐標(biāo)的幾何意義: (1)點(diǎn)P(x, y)到x軸的距離是| y |; (2)點(diǎn)P(x, y)到y(tǒng)袖的距離是| x |; (3)點(diǎn)P(x, y)到原點(diǎn)的距離是 4關(guān)于坐標(biāo)軸、原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征: (1)點(diǎn)P(a, b)關(guān)于x軸的對稱點(diǎn)是; (2)點(diǎn)P(a, b)關(guān)于x軸的對稱點(diǎn)是; (3)點(diǎn)P(a, b)關(guān)于原點(diǎn)的對稱點(diǎn)是; 二、函數(shù)的概念 1、常量和變量:在某一變化過程中可以取不同數(shù)值的量叫做變量;保持?jǐn)?shù)值不變的量叫做常量。 2、函數(shù):一般地,設(shè)在某一

19、變化過程中有兩個變量x和y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。 (1)自變量取值范圍的確是: 解析式是只含有一個自變量的整式的函數(shù),自變量取值范圍是全體實(shí)數(shù)。 解析式是只含有一個自變量的分式的函數(shù),自變量取值范圍是使分母不為0的實(shí)數(shù)。 解析式是只含有一個自變量的偶次根式的函數(shù),自變量取值范圍是使被開方數(shù)非負(fù)的實(shí)數(shù)。 注意:在確定函數(shù)中自變量的取值范圍時,如果遇到實(shí)際問題,還必須使實(shí)際問題有意義。 (2)函數(shù)值:給自變量在取值范圍內(nèi)的一個值所求得的函數(shù)的對應(yīng)值。 (3)函數(shù)的表示方法:解析法;列表法;圖像法 (4)由函數(shù)的解析式作函數(shù)的圖像,一般步驟

20、是:列表;描點(diǎn);連線 三、幾種特殊的函數(shù) 1、一次函數(shù) 直線位置與k,b的關(guān)系: (1)k0直線向上的方向與x軸的正方向所形成的夾角為銳角; (2)k0直線向上的方向與x軸的正方向所形成的夾角為鈍角;(3)b0直線與y軸交點(diǎn)在x軸的上方;(4)b0直線過原點(diǎn);(5)b0直線與y軸交點(diǎn)在x軸的下方;2、二次函數(shù) 拋物線位置與a,b,c的關(guān)系: (1)a決定拋物線的開口方向 (2)c決定拋物線與y軸交點(diǎn)的位置: c0圖像與y軸交點(diǎn)在x軸上方;c=0圖像過原點(diǎn);c0圖像與y軸交點(diǎn)在x軸下方; (3)a,b決定拋物線對稱軸的位置:a,b同號,對稱軸在y軸左側(cè);b0,對稱軸是y軸; a,b異號。對稱軸在

21、y軸右側(cè);3、反比例函數(shù): 4、正比例函數(shù)與反比例函數(shù)的對照表:例題: 例1、正比例函數(shù)圖象與反比例函數(shù)圖象都經(jīng)過點(diǎn)P(m,4),已知點(diǎn)P到x軸的距離是到y(tǒng)軸的距離2倍. 求點(diǎn)P的坐標(biāo).; 求正比例函數(shù)、反比例函數(shù)的解析式。 分析:由點(diǎn)P到x軸的距離是到y(tǒng)軸的距離2倍可知:2|m|=4,易求出點(diǎn)P的坐標(biāo),再利用待定系數(shù)法可求出這正、反比例函數(shù)的解析式。解:略 例2、已知a,b是常數(shù),且y+b與x+a成正比例.求證:y是x的一次函數(shù).分析:應(yīng)寫出y+b與x+a成正比例的表達(dá)式,然后判斷所得結(jié)果是否符合一次函數(shù)定義.證明:由已知,有y+b=k(x+a),其中k0.整理,得y=kx+(kab).因?yàn)?/p>

22、k0且kab是常數(shù),故y=kx+(kab)是x的一次函數(shù)式. 例3、填空:如果直線方程ax+by+c=0中,a0,b0且bc0,則此直線經(jīng)過第_象限.分析:先把a(bǔ)x+by+c=0化為.因?yàn)閍0,b0,所以,又bc0,即0,故0.相當(dāng)于在一次函數(shù)y=kx+l中,k=0,l=0,此直線與y軸的交點(diǎn)(0,)在x軸上方.且此直線的向上方向與x軸正方向所成角是鈍角,所以此直線過第一、二、四象限. 例4、把反比例函數(shù)y=與二次函數(shù)y=kx2(k0)畫在同一個坐標(biāo)系里,正確的是( ).答:選(D).這兩個函數(shù)式中的k的正、負(fù)號應(yīng)相同(圖13110). 例5、畫出二次函數(shù)y=x2-6x+7的圖象,根據(jù)圖象回答

23、下列問題:(1)當(dāng)x=-1,1,3時y的值是多少?(2)當(dāng)y=2時,對應(yīng)的x值是多少?(3)當(dāng)x3時,隨x值的增大y的值怎樣變化?(4)當(dāng)x的值由3增加1時,對應(yīng)的y值增加多少?分析:要畫出這個二次函數(shù)的圖象,首先用配方法把y=x2-6x+7變形為y=(x-3)2-2,確定拋物線的開口方向、對稱軸、頂點(diǎn)坐標(biāo),然后列表、描點(diǎn)、畫圖解:圖象略 例6、拖拉機(jī)開始工作時,油箱有油45升,如果每小時耗油6升(1)求油箱中的余油量Q(升)與工作時間t(時)之間的函數(shù)關(guān)系式;(2)畫出函數(shù)的圖象答:(1)Q=45-6t(2)圖象略注意:這是實(shí)際問題,圖象只能由自變量t的取值范圍0t7.5決定是一條線段,而不

24、是直線代數(shù)部分第七章:統(tǒng)計(jì)初步知識點(diǎn):一、總體和樣本: 在統(tǒng)計(jì)時,我們把所要考察的對象的全體叫做總體,其中每一考察對象叫做個體。從總體中抽取的一部分個體叫做總體的一個樣本,樣本中個體的數(shù)目叫做樣本容量。 二、反映數(shù)據(jù)集中趨勢的特征數(shù) 1、平均數(shù) (1)的平均數(shù), (2)加權(quán)平均數(shù):如果n個數(shù)據(jù)中,出現(xiàn)次,出現(xiàn)次,出現(xiàn)次(這里),則 (3)平均數(shù)的簡化計(jì)算: 當(dāng)一組數(shù)據(jù)中各數(shù)據(jù)的數(shù)值較大,并且都與常數(shù)a接近時,設(shè)的平均數(shù)為則:。 2、中位數(shù):將一組數(shù)據(jù)接從小到大的順序排列,處在最中間位置上的數(shù)據(jù)叫做這組數(shù)據(jù)的中位數(shù),如果數(shù)據(jù)的個數(shù)為偶數(shù)中位數(shù)就是處在中間位置上兩個數(shù)據(jù)的平均數(shù)。 3、眾數(shù):在一組

25、數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。一組數(shù)據(jù)的眾數(shù)可能不止一個。 三、反映數(shù)據(jù)波動大小的特征數(shù): 1、方差: (l)的方差, (2)簡化計(jì)算公式:(為較小的整數(shù)時用這個公式要比較方便) (3)記的方差為,設(shè)a為常數(shù),的方差為,則=。 注:當(dāng)各數(shù)據(jù)較大而常數(shù)a較接近時,用該法計(jì)算方差較簡便。 2、標(biāo)準(zhǔn)差:方差()的算術(shù)平方根叫做標(biāo)準(zhǔn)差(S)。 注:通常由方差求標(biāo)準(zhǔn)差。 四、頻率分布 1、有關(guān)概念 (1)分組:將一組數(shù)據(jù)按照統(tǒng)一的標(biāo)準(zhǔn)分成若干組稱為分組,當(dāng)數(shù)據(jù)在100個以內(nèi)時,通常分成512組。 (2)頻數(shù):每個小組內(nèi)的數(shù)據(jù)的個數(shù)叫做該組的頻數(shù)。各個小組的頻數(shù)之和等于數(shù)據(jù)總數(shù)n。 (3)

26、頻率:每個小組的頻數(shù)與數(shù)據(jù)總數(shù)n的比值叫做這一小組的頻率,各小組頻率之和為l。 (4)頻率分布表:將一組數(shù)據(jù)的分組及各組相應(yīng)的頻數(shù)、頻率所列成的表格叫做頻率分布表。 (5)頻率分布直方圖:將頻率分布表中的結(jié)果,繪制成的,以數(shù)據(jù)的各分點(diǎn)為橫坐標(biāo),以頻率除以組距為縱坐標(biāo)的直方圖,叫做頻率分布直方圖。 圖中每個小長方形的高等于該組的頻率除以組距。 每個小長方形的面積等于該組的頻率。 所有小長方形的面積之和等于各組頻率之和等于1。 樣本的頻率分布反映樣本中各數(shù)據(jù)的個數(shù)分別占樣本容量n的比例的大小,總體分布反映總體中各組數(shù)據(jù)的個數(shù)分別在總體中所占比例的大小,一般是用樣本的頻率分布去估計(jì)總體的頻率分布。

27、2、研究頻率分布的方法;得到一數(shù)據(jù)的頻率分布和方法,通常是先整理數(shù)據(jù),后畫出頻率分布直方圖,其步驟是: (1)計(jì)算最大值與最小值的差;(2)決定組距與組數(shù);(3)決定分點(diǎn);(4)列領(lǐng)率分布表;(5)繪頻率分布直方圖。例題: 例1、某養(yǎng)魚戶搞池塘養(yǎng)魚,放養(yǎng)鱔魚苗20000尾,其成活率為70,隨意撈出10尾魚,稱得每尾的重量如下(單位:千克)08、09、12、13、08、1l、10、12、08、09 根據(jù)樣本平均數(shù)估計(jì)這塘魚的總產(chǎn)量是多少千克? 分析:先算出樣本的平均數(shù),以樣本平均數(shù)乘以20000,再乘以70%。解:略 規(guī)律總結(jié)求平均數(shù)有三種方法,即當(dāng)所給數(shù)據(jù)比較分散時,一般用平均數(shù)的概念來求;著所給數(shù)據(jù)較大且都在某

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論