版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、PAGE PAGE 7Appllicaatioon oofThe Funndammenttal Hommomoorphhismm Thheorremof GGrouupLI QQiann-qiian LIIU ZZhi-ganng YANNG LLi-yyingg(Depparttmennt oof MMathhemaaticcs aand Commputter Sciiencce, Guaangxxi TTeaccherrs EEduccatiion Uniiverrsitty,Nannningg Guuanggxi 53300001, P.R.CChinna)Absttracct: The
2、e fuundaamenntall hoomommorpphissm ttheooremm iss veery impporttantt coonseequeencee inn grroupp thheorry, by usiing it we cann reesollve manny pprobblemms. In thiis ppapeer wwe rreseearcchess maainlly aabouut tthe funndammenttal hommomoorphhismm thheorrem appplieed tto ddireect prooduccts of grooup
3、ss annd ggrouup oof iinneer aautoomorrphiismss off a grooup G. Keywwordd: Thhe FFunddameentaal HHomoomorrphiism Theeoreem; Dirrectt Prroduuctss; IInneer AAutoomorrphiismssMR(220033) SSubjjectt Cllasssifiicattionn: 166WChinnesee Liibraary Claassiificcatiion: O1553.33Docuumennt ccodee: A In tthe reaal
4、m of absstraact alggebrra, grooup is onee off thhe bbasiic aand impporttantt coonceept, haave exttenssivee apppliicattionn inn thhe mmathh ittsellf aand manny ssidee off modeern sciiencce ttechhniqque. Foor eexammplee Thheorriess phhysiics, Quuanttum mecchannicss, Quuanttum cheemisstryy, Crrysttalll
5、ogrraphhy aappllicaatioon aare cleear cerrtifficaatioons. Soo thhat, affterr wee sttudyy abbstrractt allgebbra couursee, ggo ddeepp innto a ggrouund of theeoriies of ressearrch to havve tthe neccesssityy veery mucch mmoree. IIn tthe conntennts of grooup, thhe ffunddameentaal hhomoomorrphiism theeore
6、em iis vveryy immporrtannt ttheooremm, wwe ccan usee itt prrovee maany proobleems aboout grooup theeoryy, iin tthiss paaperr too prrovee seeverral conncluusioons as follloww wiith thee fuundaamenntall hoomommorpphissm ttheooremm: TThese coonteentss arre aall staandaard if we nott too thhe sspecciall
7、 prroviisioon aand expplaiinedd.Defiinittionn 1. Leet bbe aa suubgrroupp off a grooup witth ssymbbol , wwe ssay iss thhe nnormmal subbgrooup of iff onne oof tthe folllowwingg coondiitioons holld. To simmpliify mattterrs, we wriite . (1) foor aany ;(2) wheenevver anyy ;(3) foor eeverry andd anny .Def
8、iinittionn 2. Thhe kkernnel of a ggrouup hhomoomorrphiism frrom to a ggrouup witth iidenntitty is thee seet . Thhe kkernnel of iss deenotted by .Defiinittionn 3. Leet bbe aa coolleectiion of grooupss. TThe extternnal dirrectt prroduuct of , 廣西自然然科學(xué)基基金(0044770388)資助助項目writttenn ass , is thee seet oof
9、 aall m-ttuplees ffor whiich thee itts ccompponeent is an eleemennt oof , annd tthe opeerattionn iss coompoonenntwiise. Inn syymbools =,wherre iis ddefiinedd too bee Notiice thaat iit iis eeasiily to verrifyy thhat thee exxterrnall diirecct pprodductt off grroupps iis iitseelf a ggrouup.4 Defiinitti
10、onn 4. Leet bbe aa grroupp annd bbe aa suubgrroupp off . Forr anny , thhe sset iss caalleed tthe lefft ccoseet oof iin cconttainningg . Anaaloggoussly iss caalleed tthe rigght cosset of H iin conntaiininng .Lemmma 11.11 ( Thhe ffunddameentaal hhomoomorrphiism theeoreem) Leet be a ggrouup hhomoomorrp
11、hiism froom to . TThenn thhe = iss thhe nnormmal subbgrooup of , aand . Too siimpllifyy maatteers, wee caall thee thheorrem as thee FHHT.Lemmma 22.22 Lett bbe aa grroupp hoomommorpphissm ffromm tto . Thhen we havve tthe folllowwingg prropeertiies:(1)IIf iis aa suubgrroupp off , theen iis aa suubgrro
12、upp off ;(2)IIf iis aa noormaal iin, theen iis aa noormaal iin;(3)IIf iis aa suubgrroupp off , theen is a ssubggrouup oof ;(4)IIf iis aa noormaal ssubggrouup oof , thhen iss a norrmall suubgrroupp off Lemmma 33.33 Lett be a hhomoomorrphiism froom a ggrouup tto aa grroupp , aand,. TThenn .Lemmma 44.4
13、4 Lett H be a ssubggrouup oof GG annd llet bellongg too G, thhen:(1) if andd onnly if ;(2) if andd onnly if .By uusinng tthe aboove lemmmass wee caan oobtaain thee foolloowinng mmainnly ressultts.Theooremm 1. Leet GG annd HH bee twwo ggrouups. Suuppoose JG andd KHH, tthenn annd .Prooof. Firrst we wi
14、lll pprovve . FFor anyy aand eveery . WWe hhavee:.Sincce andd , we cann geet , i.e. .Thuss . WWe mmakee usse oof tthe FHTT too prrovee thhat iss issomoorphhic to. Thhereeforre wwe mmustt loook forr a grooup hommomoorphhismm frrom onnto annd ddeteermiine thee keerneel oof iit. In facct oone cann deef
15、inne ccorrrespponddenccedeefinned by . CCleaarlyy, , thheree muust be too saatissfy. Thhus, iss onnto.Becaausee off JGG, wwe hhavee foor, simmilaarlyy, ffor .Whenn , theere aree .For anyy , we havve =.Hencce . Thhereeforre iis ggrouup aa hoomommorpphissm ffromm onntoaand is thee iddenttityy off. For
16、 anyy , tthenn, aaccoordiing to thee prropeertyy off coosett, wwe ccan gett: if andd onnly if annd , i.e. =. Now lett wee loook at ourr prrooff: , iss a grooup hommomoorphhismm frrom ontto andd thhe kkernnel of is . AAccoordiing to thee FHHT, we cann geet .Theooremm 2. LLet iss a grooup hommomoorphh
17、ismm frrom onnto .IIf andd , theen wheere .Prooof: Acccorrdinng tto LLemmma 22.22 (2), wwe kknoww .To eestaabliish , wwe ffirsstlyy neeed to connstrructt a mapppinng andd prrovee iis aa grroupp hoomommorpphissm ffromm oontoo . We ggivee thhe mmapppingg deffineed bby wheere =.For , ssincce is a ssurj
18、jecttionn frrom too , we musst bbe ffounnd ssuchh thhat .TThuss iis oontoo.For arbbitrraryy , Therrefoore iss a grooup hommomoorphhismm.We wwilll noow sshoww , in facct wwe kknoww thhat iss iddenttityy off , acccorddingg too Leemmaa 4, wee caan gget thaat ffor, thhen , ssay , sso tthatt. On thee ott
19、herr haand , , tthatt iss too saay , .MMoreeoveer , beecauuse of , theerefforee . Thaat iis . Acccorrdinng tto tthe FHTT, wwe ccan obttainn .Theeoreem 11 annd TTheooremm 2 appply Exeerciise 1 aand Exeerciise 2.Exerrcisse 11. iss noormaal ssubggrouup oof , iss a norrmall suubgrroupp off .So tthatt fo
20、or aany annd , foor aa fuuncttionn: wee haave iss a grooup isoomorrphiism, soo thhat Assuume andd arre ssetss off alll tthe nonnzerro rreall nuumbeers andd poosittivee reeal nummberrs rresppecttiveely, itt iss reeadiily to verrifyy thhat theey aare inddeedd grroupp wiith orddinaary mulltippliccatiio
21、n.Exerrcisse 22. LLet be genneraal llineear grooup of 22 mmatrricees ooverr unnderr orrdinnaryy maatriix mmulttipllicaatioon . Thhen thee maappiing iss a grooup hommomoorphhismm frrom onnto . TThe grooup off mmatrricees wwithh deeterrminnantt 1 oveer is a nnormmal subbgrooup of . MMoreeoveer .Defiin
22、ittionn 5. Ann auutommorpphissm oof ggrouupiss juust a ggrouup iisommorpphissm ffromm too ittsellf. Thee seet oof aall auttomoorphhismms oof ggrouupiss deenotted by . FFor anyy , is callledd ann innnerr auutommorpphissm oof aand is thee seet oof aall innner auttomoorphhismm off .Theooremm 3: LLetbbe
23、 aa grroupp annd tthe mapppinng deffineed bby . Thhen andd.Prooof. Itt iss cllearrly thaat5.To sshoww , suffficce iit tto pprovve tthatt iis aan aautoomorrphiism of forr anny . 1)(oone-to-onee) FFor anyy , if =, tthenn byy ussingg caanceellaatioon llaw of grooup. Thhus iss onne-tto-oone.2)(oontoo) F
24、For anyy , we takke , thhen, soo thhat iss onnto.3)(OO.P.) FFor anyy , we havve . Thhereeforre is isoomorrphiism froom to .Accoordiing to thee deefinnitiion of auttomoorphhismm. WWe kknoww iis aan aautoomorrphiism of . Notiice thaat ffor anyy , we havve andd .In ffactt foor aany , iit iis ccleaarlyy
25、 . Alsso , Thuss .Sincce , saay , wee haave knoown . WWe ccan obttainn, ii.e. HHencce tthe prooof of is commpleete. It iis eeasyy too seee tthatt foor eeverry, iff annd oonlyy iff whheree iss thhe ccentter of (shhortt foor ).Let bee thhe mmapppingg deefinned by , wwe wwilll prrovee thhat iss a groou
26、p hommomoorphhismm frrom G oontoo I(G) andd thhat C iis iits kerrnell.For eveery , wwe ccan reaadilly ffindd thhat , tthatt iss too saay, is ontto. Forr anny , siincee , so thaat is a ggrouup hhomoomorrphiism froom ontto .Notiice thaat ffor anyy aand eveery , wwe hhavee , i.ee., , tthatt iss . We obttainn, hhencce .
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度二零二五版跨境電商進出口代理合同范本2篇
- 二零二五年度醫(yī)療器械采購合同標(biāo)的數(shù)量與質(zhì)量檢測標(biāo)準(zhǔn)3篇
- 2025年度新型土石方運輸車輛租賃服務(wù)合同樣本12篇
- 二零二五年度個人留學(xué)借款借條范本及合同規(guī)范3篇
- 二零二五年度建筑裝飾工程項目施工合同
- 二零二五年度建筑安全責(zé)任追究措施協(xié)議書3篇
- 海南衛(wèi)生健康職業(yè)學(xué)院《園藝植物保護學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年家政服務(wù)與家庭健康咨詢合同3篇
- 二零二五年度搬家貨運智能化物流解決方案合同3篇
- 按鍵去抖課程設(shè)計
- 微型消防站消防員培訓(xùn)內(nèi)容
- 大一中國近代史綱要期末考試試題及答案
- (完整版)鋼筋加工棚驗算
- 安徽省合肥市廬陽區(qū)2023-2024學(xué)年三年級上學(xué)期期末數(shù)學(xué)試卷
- 概念方案模板
- 西南交大畢業(yè)設(shè)計-地鐵車站主體結(jié)構(gòu)設(shè)計
- 2024年山東傳媒職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 江蘇省南通市崇川區(qū)2023-2024學(xué)年三年級上學(xué)期期末語文試卷
- crtd植入術(shù)護理查房
- 掃雪鏟冰安全教育培訓(xùn)
- 人教版三年級下冊必讀書目《中國古代寓言故事》
評論
0/150
提交評論