版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知復(fù)數(shù)和復(fù)數(shù),則為ABCD2已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A1B2C3D43對(duì)于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,.下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是
2、( )發(fā)芽所需天數(shù)1234567種子數(shù)43352210A2B3C3.5D44已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為( )ABCD5若,則的虛部是A3BCD6命題:的否定為ABCD7用電腦每次可以從區(qū)間內(nèi)自動(dòng)生成一個(gè)實(shí)數(shù),且每次生成每個(gè)實(shí)數(shù)都是等可能性的.若用該電腦連續(xù)生成3個(gè)實(shí)數(shù),則這3個(gè)實(shí)數(shù)都小于的概率為( )ABCD8在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是( )ABCD29已知,則的值構(gòu)成的集合是( )ABCD10已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=( )A-1B1C0D211已知全集,集合,則( )ABCD12 “哥德巴赫猜想”是近代三大數(shù)學(xué)難
3、題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫(xiě)成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13某高校開(kāi)展安全教育活動(dòng),安排6名老師到4個(gè)班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個(gè)班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有_種.14對(duì)于任意的正數(shù),不等式恒成立,則的最大值為_(kāi).15已知復(fù)數(shù)(為虛數(shù)單位),則的模為_(kāi)16 “”是
4、“”的_條件.(填寫(xiě)“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖,D是在ABC邊AC上的一點(diǎn),BCD面積是ABD面積的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求邊AC的長(zhǎng)18(12分)已知為各項(xiàng)均為整數(shù)的等差數(shù)列,為的前項(xiàng)和,若為和的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)若,求最大的正整數(shù),使得.19(12分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.20(12分)如圖,在四邊形ABCD中,AB/CD,ABD=30
5、,AB2CD2AD2,DE平面ABCD,EF/BD,且BD2EF()求證:平面ADE平面BDEF;()若二面角CBFD的大小為60,求CF與平面ABCD所成角的正弦值21(12分)已知數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和22(10分)我們稱n()元有序?qū)崝?shù)組(,)為n維向量,為該向量的范數(shù).已知n維向量,其中,2,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】利用復(fù)數(shù)的三角形式的乘法運(yùn)算
6、法則即可得出【詳解】z1z2(cos23+isin23)(cos37+isin37)cos60+isin60故答案為C【點(diǎn)睛】熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問(wèn)題高考必考,常見(jiàn)考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.2D【解析】先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡(jiǎn)單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.3C【解析】根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點(diǎn)睛】本題考查中位數(shù)的計(jì)算,屬
7、基礎(chǔ)題.4B【解析】根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過(guò)變形求解出的周期,進(jìn)而算出.【詳解】為上的奇函數(shù),而函數(shù)是上的偶函數(shù),故為周期函數(shù),且周期為故選:B【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.5B【解析】因?yàn)?,所以的虛部?故選B6C【解析】命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C7C【解析】由幾何概型的概率計(jì)算,知每次生成一個(gè)實(shí)數(shù)小于1的概率為,結(jié)合獨(dú)立事件發(fā)生的概率計(jì)算即可.【詳解】每次生成一個(gè)實(shí)數(shù)小于1的概率為.這3個(gè)實(shí)數(shù)都小于1的概率為.故選:C.【點(diǎn)睛】本題考查獨(dú)立事件同
8、時(shí)發(fā)生的概率,考查學(xué)生基本的計(jì)算能力,是一道容易題.8B【解析】畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故.當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.9C【解析】對(duì)分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡(jiǎn)可得.【詳解】為偶數(shù)時(shí),;為奇數(shù)時(shí),則的值構(gòu)成的集合為.【點(diǎn)睛】本題考查三角式的化簡(jiǎn),誘導(dǎo)公式,分類討論,屬于基本題.10B【解析】化簡(jiǎn)得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:
9、B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.11B【解析】直接利用集合的基本運(yùn)算求解即可【詳解】解:全集,集合,則,故選:【點(diǎn)睛】本題考查集合的基本運(yùn)算,屬于基礎(chǔ)題12A【解析】列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13156【解析】先考慮每班安排的老
10、師人數(shù),然后計(jì)算出對(duì)應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級(jí)的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個(gè)班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個(gè)班,共有種,所以種.故答案為:.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,難度一般.對(duì)于分組的問(wèn)題,首先確定每組的數(shù)量,對(duì)于其中特殊元素,可通過(guò) “正難則反”的思想進(jìn)行分析.14【解析】根據(jù)均為正數(shù),等價(jià)于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價(jià)于恒成立,令則,當(dāng)且僅當(dāng)即時(shí)取得等號(hào),故的最大值為.故答案為:【點(diǎn)睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵
11、在于合理進(jìn)行等價(jià)變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.15【解析】,所以16充分不必要【解析】由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17();()【解析】()利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.()根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(),所以所以;(),所以,所以,所以,所以邊【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)
12、用,關(guān)鍵在于識(shí)記公式,屬中檔題.18(1)(2)1008【解析】(1)用基本量求出首項(xiàng)和公差,可得通項(xiàng)公式;(2)用裂項(xiàng)相消法求得和,然后解不等式可得【詳解】解:(1)由題得,即解得或因?yàn)閿?shù)列為各項(xiàng)均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,考查裂項(xiàng)相消法求數(shù)列的和在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法19(1);(2)證明見(jiàn)解析.【解析】(1),分,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時(shí),方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時(shí),函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上
13、恒成立;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時(shí),在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時(shí),不等式恒成立,的最小值為.(2)由第(1)知:若時(shí),.若,則,即成立.將換成,得成立,即,以此類推,得,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問(wèn)題、證明數(shù)列不等式問(wèn)題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計(jì)算能力,是一道難題.20(1)見(jiàn)解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE平面BDEF;(2)建立空間直角坐標(biāo)系,利用空間
14、向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當(dāng)中來(lái)求解.詳解:()在ABD中,ABD30,由AO2AB2+BD22ABBDcos30,解得BD,所以AB2+BD2=AB2,根據(jù)勾股定理得ADB90ADBD.又因?yàn)镈E平面ABCD,AD平面ABCD,ADDE.又因?yàn)锽DDED,所以AD平面BDEF,又AD平面ABCD,平面ADE平面BDEF, ()方法一: 如圖,由已知可得,則,則三角形BCD為銳角為30的等腰三角形. 則.過(guò)點(diǎn)C做,交DB、AB于點(diǎn)G,H,則點(diǎn)G為點(diǎn)F在面ABCD上的投影.連接FG,則,DE平面ABCD,則平面.過(guò)G做于點(diǎn)I,則BF平面
15、,即角為二面角CBFD的平面角,則60.則,則.在直角梯形BDEF中,G為BD中點(diǎn),設(shè) ,則,則. ,則,即CF與平面ABCD所成角的正弦值為()方法二:可知DA、DB、DE兩兩垂直,以D為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系D-xyz.設(shè)DEh,則D(0,0,0),B(0,0),C(,h).,. 設(shè)平面BCF的法向量為m(x,y,z),則所以取x=,所以m(,-1,),取平面BDEF的法向量為n(1,0,0),由,解得,則,又,則,設(shè)CF與平面ABCD所成角為,則sin=.故直線CF與平面ABCD所成角的正弦值為 點(diǎn)睛:該題考查的是立體幾何的有關(guān)問(wèn)題,涉及到的知識(shí)點(diǎn)有面面垂直的判定,線面角的正
16、弦值,在求解的過(guò)程中,需要把握面面垂直的判定定理的內(nèi)容,要明白垂直關(guān)系直角的轉(zhuǎn)化,在求線面角的有關(guān)量的時(shí)候,有兩種方法,可以應(yīng)用常規(guī)法,也可以應(yīng)用向量法.21(1);(2)【解析】(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項(xiàng)公式,進(jìn)而求出的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和.【詳解】解:(1),是首項(xiàng)為,公比為的等比數(shù)列所以,(2).【點(diǎn)睛】本題考查了由數(shù)列的遞推公式求通項(xiàng)公式,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和的問(wèn)題,屬于中檔題.22(1),.(2),【解析】(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)都寫(xiě)出來(lái),再做和;(2)用組合數(shù)表示和,再由公式或?qū)⒔M合數(shù)進(jìn)行化簡(jiǎn),得出最終結(jié)果.【詳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)水晶飾品行業(yè)市場(chǎng)競(jìng)爭(zhēng)力策略及投資前景展望報(bào)告版
- 2024-2030年中國(guó)水力發(fā)電行業(yè)發(fā)展態(tài)勢(shì)投資規(guī)劃分析報(bào)告
- 2022年大學(xué)儀器儀表專業(yè)大學(xué)物理二期末考試試題C卷-附解析
- 網(wǎng)絡(luò)傳媒行業(yè)內(nèi)容審核制度
- 2022年大學(xué)水產(chǎn)專業(yè)大學(xué)物理下冊(cè)期末考試試題A卷-附答案
- 2022年大學(xué)環(huán)境生態(tài)專業(yè)大學(xué)物理二期中考試試題D卷-附解析
- 2022年大學(xué)生物科學(xué)專業(yè)大學(xué)物理二期中考試試題-含答案
- 2022年大學(xué)中醫(yī)學(xué)專業(yè)大學(xué)物理下冊(cè)開(kāi)學(xué)考試試題B卷-含答案
- 2022年大學(xué)工程力學(xué)專業(yè)大學(xué)物理二期中考試試題-附解析
- 景區(qū)消防管理制度與應(yīng)急預(yù)案
- 盛世華誕慶祝祖國(guó)成立75周年共筑中國(guó)夢(mèng)同慶國(guó)慶節(jié)課件
- 2024年廣州市少年宮公開(kāi)招聘工作人員歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 全過(guò)程工程咨詢管理服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 景觀水處理技術(shù)介紹
- 6.2反比例函數(shù)的圖象與性質(zhì)(第一課時(shí))教學(xué)設(shè)計(jì)2024-2025學(xué)年北師大版數(shù)學(xué)九年級(jí)上冊(cè)
- 了解紅旗渠學(xué)習(xí)紅旗渠精神
- 集團(tuán)母子公司協(xié)議書(shū)
- 檢察院預(yù)防職務(wù)犯罪講座
- 2024年二級(jí)建造師繼續(xù)教育題庫(kù)及答案(500題)
- 大數(shù)據(jù)在文學(xué)作品影響力分析中的應(yīng)用
- 數(shù)字貨幣對(duì)會(huì)計(jì)的影響
評(píng)論
0/150
提交評(píng)論