2022屆江西省大余縣新城高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆江西省大余縣新城高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆江西省大余縣新城高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆江西省大余縣新城高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆江西省大余縣新城高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合,則等于( )ABCD2在平行四邊形中,若則( )ABCD3函數(shù),的部分圖象如圖所示,則函數(shù)表達(dá)式為( )

2、ABCD4若與互為共軛復(fù)數(shù),則( )A0B3C1D45若復(fù)數(shù)滿足,則對應(yīng)的點位于復(fù)平面的( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限6已知為定義在上的奇函數(shù),且滿足當(dāng)時,則( )ABCD7設(shè),是非零向量.若,則( )ABCD8下列函數(shù)中,在區(qū)間上單調(diào)遞減的是( )ABC D9已知函數(shù),若成立,則的最小值是( )ABCD10若等差數(shù)列的前項和為,且,則的值為( )A21B63C13D8411已知函數(shù),若關(guān)于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為( )ABCD12已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖,在正四棱柱中

3、,P是側(cè)棱上一點,且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為_.14展開式中的系數(shù)為_15函數(shù)的圖象在處的切線與直線互相垂直,則_16如圖,在ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.18(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,(單位:元),得到如圖所示的頻率分布直方圖

4、.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.19(12分)已知 (1)當(dāng)時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:20(12分)已知函數(shù)(1)若曲線在處的切線為,試求實數(shù),的值;(2)當(dāng)時,若有兩個極值點,且,若不等式恒成立,試求實數(shù)m的取值范圍21(12分)在中,角、的對邊分別為、,且.(1)若

5、,求的值;(2)若,求的值.22(10分)已知數(shù)列中,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】先化簡集合A,再與集合B求交集.【詳解】因為,所以.故選:C【點睛】本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎(chǔ)題.2C【解析】由,,利用平面向量的數(shù)量積運算,先求得利用平

6、行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,平行四邊形中, ,,,因為,所以,,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數(shù)量積的運算法則,屬于中檔題. 向量的運算有兩種方法:()平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);()三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).3A【解析】根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,解得,因為函數(shù)過點,所以,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.4C【解析】計算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,

7、又由共軛復(fù)數(shù)概念得:,.故選:C【點睛】本題主要考查了復(fù)數(shù)的運算,共軛復(fù)數(shù)的概念.5D【解析】利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點,對應(yīng)的點位于復(fù)平面的第四象限.故選:D.【點睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.6C【解析】由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,則函數(shù)的周期是,所以,又函數(shù)為上的奇函數(shù),且當(dāng)時,所以,.故選:C.【點睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.7D【解析】試題分析:由題意

8、得:若,則;若,則由可知,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標(biāo)運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);將條件通過向量的線性運算進(jìn)行轉(zhuǎn)化,再利用求解(較難);建系,借助向量的坐標(biāo)運算,此法對解含垂直關(guān)系的問題往往有很好效果.8C【解析】由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函

9、數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.9A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值詳解:設(shè),則,令,則,是上的增函數(shù),又,當(dāng)時,當(dāng)時,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,的最小值是故選A點睛:本題易錯選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時學(xué)生可能不會將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯10B【解析】由已知結(jié)合等差數(shù)列的通項公式及求和公式可求,然后結(jié)合等差數(shù)列的求和公式即可求解【詳解】解:因為,所以,解可得,則故選:B【點睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題11C【解析】求導(dǎo)

10、,先求出在單增,在單減,且知設(shè),則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,令,解得,故當(dāng)時,當(dāng),且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進(jìn)而判斷函數(shù)在該區(qū)間上零

11、點的個數(shù).12B【解析】由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以 得,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù) 的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標(biāo)錯寫為0二、填空題:本題共4小題,每小題5分,共20分。13【解析】設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎(chǔ)題.14【解析】把按照二項式定理展開,可得的展開式中的系數(shù)【詳解】解:,故它的展開式中的系數(shù)為,故答案為:【

12、點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題151.【解析】求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率 本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵16【解析】試題分析:根據(jù)題意有,因為三點共線,所以有,從而有,所以的最小值是考點:向量的運算,基本不等式【方法點睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點共線,結(jié)合向量的

13、性質(zhì)可知,從而等價于已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17特征值為1,特征向量為【解析】設(shè)出矩陣M結(jié)合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設(shè)矩陣M,則AM,所以,解得,所以M,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x0,所以屬于特征值的的一個特征向量為【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關(guān)鍵是明確其運算規(guī)則,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).18(1)3

14、360元;(2)見解析【解析】(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值【詳解】(1)記每個農(nóng)戶的平均損失為元,則 ;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)20005015(戶),損失超過8000元的農(nóng)戶共有0.000032000503(戶),隨機(jī)抽取2戶,則X的可能取值為0,1,2;計算P(X0),P(X1),P(X2),所以X的分布列為; X012P數(shù)學(xué)期望為E(X)0+1+2【點睛】本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望

15、計算問題,屬于中檔題19(1)沒有極值點;(2)證明見解析【解析】(1)求導(dǎo)可得,再求導(dǎo)可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導(dǎo)函數(shù)可得,即可求證.【詳解】(1)當(dāng)時,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,由(1)可知,可得,所以,即,下面證明,只需證明:,令,則證,即 設(shè),那么,所以,所以,即【點睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值點,考查利用導(dǎo)函數(shù)解決雙變量問題,考查運算能力與推理論證能力.20(1);(

16、2)【解析】(1)根據(jù)題意,求得的值,根據(jù)切點在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個極值點,等價于方程的兩個正根,不等式恒成立,等價于恒成立,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,聯(lián)立可得(2)當(dāng)時,有兩個極值點,且,是方程的兩個正根,不等式恒成立,即恒成立,由,得,令,在上是減函數(shù),故【點睛】該題考查的是有關(guān)導(dǎo)數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點的個數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.21(1);(2).【解析】(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角

17、和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,即, 解得或(舍),所以;(2)由及得, 所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計算能力,屬于中等題.22(1)(2)存在,【解析】由數(shù)列為“數(shù)列”可得,,兩式相減得,又,利用等比數(shù)列通項公式即可求出,進(jìn)而求出;由題意得,兩式相減得,據(jù)此可得,當(dāng)時,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時,且為整數(shù)即可求出符合題意的的所有值.【詳解】因為數(shù)列為“數(shù)列”,所以,故,兩式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論