

下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2022-2023學(xué)年廣東省汕頭市林百欣科技中專高一數(shù)學(xué)理上學(xué)期期末試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 圖中陰影部分所表示的集合是( )ABCU(AC) B(AB) (BC) C(AC)(CUB) DCU(AC)B參考答案:A略2. 方程的根一定位于區(qū)間 ( )ABCD 參考答案:B3. 如右圖所示,正方體ABCDA1B1C1D1中,E、F分別是正方形ADD1A1和ABCD的中心,G是CC1的中點(diǎn),設(shè)GF、C1E與AB所成的角分別為、,則+等于()A120B60C75D90參考答案:D【考點(diǎn)】異面直線及其所成的
2、角【分析】本題適合建立空間坐標(biāo)系得用向量法解決這個(gè)立體幾何問題,建立空間坐標(biāo)系,給出有關(guān)點(diǎn)的坐標(biāo),求出直線的GF、C1E與AB的方向向量,利用夾角公式求線線角的余弦值即可【解答】解:建立坐標(biāo)系如圖,B(2,0,0),A(2,2,0),G(0,0,1),F(xiàn)(1,1,0),C1(0,0,2),E(1,2,1)則=(0,2,0),=(1,1,1),=(1,2,1),cos,=,cos,=,cos=,cos=,sin=,+=90,故選D4. (5分)已知直線l平面,直線m?平面,下列命題正確的是()lm?alm?lm?lmABCD參考答案:C考點(diǎn):平面與平面垂直的判定;空間中直線與直線之間的位置關(guān)系;
3、直線與平面平行的判定 專題:證明題;空間位置關(guān)系與距離分析:由已知中直線l平面,直線m?平面,結(jié)合條件根據(jù)線面垂直,面面平行的幾何特征,判斷選項(xiàng)的正誤得到答案解答:直線l平面,直線m?平面,若lm,直線m?平面,則與可能平行也可能相交,故不正確;若lm,直線l平面,則直線m平面,又直線m?平面,則,故正確;若,直線l平面,直線m?平面,則l與m可能平行、可能相交也可能異面,故不正確;若,直線l平面,?l,正確故選C點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是空間平面與平面關(guān)系的判定及直線與直線關(guān)系的確定,熟練掌握空間線面關(guān)系的幾何特征是解答本題的關(guān)鍵5. 已知?jiǎng)t( )A. B. C. D. 參考答案:C略6. 若
4、sin0且tan0,則是()A第一象限角B第二象限角C第三象限角D第四象限角參考答案:C【考點(diǎn)】三角函數(shù)值的符號(hào)【分析】由正弦和正切的符號(hào)確定角的象限,當(dāng)正弦值小于零時(shí),角在第三四象限,當(dāng)正切值大于零,角在第一三象限,要同時(shí)滿足這兩個(gè)條件,角的位置是第三象限,實(shí)際上我們解的是不等式組【解答】解:sin0,在三、四象限;tan0,在一、三象限故選:C7. 已知函數(shù),若方程有三個(gè)不同的實(shí)根,則實(shí)數(shù)的范圍是( )A B C D參考答案:B試題分析:方程有個(gè)不同的實(shí)根,可轉(zhuǎn)化為函數(shù)與軸有個(gè)不同的交點(diǎn),當(dāng)時(shí),可得在上有個(gè)零點(diǎn),即當(dāng)時(shí),與軸有個(gè)交點(diǎn),等價(jià)于在上有解,有解,在單調(diào)遞增,且,所以只需,故選B.
5、考點(diǎn):函數(shù)與方程.【方法點(diǎn)晴】本題考查學(xué)生的是函數(shù)與方程思想的應(yīng)用,屬于中檔題目.函數(shù)與方程思想是數(shù)學(xué)四大思想之一,在函數(shù)題中均有體現(xiàn),方法為函數(shù)的零點(diǎn)即為函數(shù)與軸的交點(diǎn),也可轉(zhuǎn)化為函數(shù)等于時(shí)的方程根,本題首先可判斷出時(shí)的根個(gè)數(shù)為個(gè),因此時(shí)有個(gè)根,通過參變分離,轉(zhuǎn)化為與在只有一個(gè)交點(diǎn).8. 已知函數(shù)是定義在R上的奇函數(shù),當(dāng)0時(shí),則不等式的解集是( )A.B.C.D.參考答案:A9. 已知直線與直線平行,則的值為 ( ) A B. C. 1 D. 參考答案:D10. 已知三棱錐的正視圖與俯視圖如圖所示,俯視圖是邊長(zhǎng)為2的正三角形,則該三棱錐的側(cè)視圖可能是()參考答案:B二、 填空題:本大題共7小
6、題,每小題4分,共28分11. (5分)函數(shù)y=的定義域?yàn)?參考答案:1,2)考點(diǎn):對(duì)數(shù)函數(shù)的定義域 專題:計(jì)算題分析:先列出自變量所滿足的條件,再解對(duì)應(yīng)的不等式即可(注意真數(shù)大于0)解答:因?yàn)椋阂购瘮?shù)有意義:所以:?1x2故答案為:1,2)點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的定義域,考查學(xué)生發(fā)現(xiàn)問題解決問題的能力,是基礎(chǔ)題12. 若的最小正周期是,其中,則的值是 參考答案:1013. 已知圓錐的頂點(diǎn)為S,母線SA,SB互相垂直,SA與圓錐底面所成角為30,若SAB的面積為8,則該圓錐的體積為_參考答案:8分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長(zhǎng),代入公式計(jì)算即可.詳解:如下圖所
7、示,又,解得,所以,所以該圓錐的體積為.點(diǎn)睛:此題為填空題的壓軸題,實(shí)際上并不難,關(guān)鍵在于根據(jù)題意作出相應(yīng)圖形,利用平面幾何知識(shí)求解相應(yīng)線段長(zhǎng),代入圓錐體積公式即可.14. 函數(shù)的最小值為_ .參考答案:815. 已知a,b為不垂直的異面直線,是一個(gè)平面,則a,b在上的射影有可能是:兩條平行直線;兩條互相垂直的直線;同一條直線;一條直線及其外一點(diǎn)在上面結(jié)論中,正確結(jié)論的編號(hào)是_(寫出所有正確結(jié)論的編號(hào))參考答案: 16. 函數(shù)的值域是_.參考答案:略17. (5分)對(duì)于下列結(jié)論:函數(shù)y=ax+2(xR)的圖象可以由函數(shù)y=ax(a0且a1)的圖象平移得到;函數(shù)y=2x與函數(shù)y=log2x的圖象
8、關(guān)于y軸對(duì)稱;方程log5(2x+1)=log5(x22)的解集為1,3;函數(shù)y=ln(1+x)ln(1x)為奇函數(shù)其中正確的結(jié)論是 (把你認(rèn)為正確結(jié)論的序號(hào)都填上)參考答案:考點(diǎn):對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用 專題:函數(shù)的性質(zhì)及應(yīng)用分析:利用圖象的平移關(guān)系判斷利用對(duì)稱的性質(zhì)判斷解對(duì)數(shù)方程可得利用函數(shù)的奇偶性判斷解答:y=ax+2的圖象可由y=ax的圖象向左平移2個(gè)單位得到,正確;y=2x與y=log2x互為反函數(shù),所以的圖象關(guān)于直線y=x對(duì)稱,錯(cuò)誤;由log5(2x+1)=log5(x22)得,即,解得x=3所以錯(cuò)誤;設(shè)f(x)=ln(1+x)ln(1x),定義域?yàn)椋?,1),關(guān)于原點(diǎn)對(duì)稱,
9、f(x)=ln(1x)ln(1+x)=f(x)所以f(x)是奇函數(shù),正確,故正確的結(jié)論是故答案為:點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)與應(yīng)用正確理解概念是解決問題的關(guān)鍵三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. (12分)已知函數(shù)f(x)=3x,f(a+2)=18,g(x)=f(ax)f(2ax)(1)若函數(shù)g(x)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;(2)對(duì)任意x,g(x)2恒成立,求實(shí)數(shù)的取值范圍參考答案:考點(diǎn):函數(shù)恒成立問題;函數(shù)單調(diào)性的性質(zhì) 專題:計(jì)算題;函數(shù)的性質(zhì)及應(yīng)用;不等式的解法及應(yīng)用分析:(1)由條件f(a+2)=18建立關(guān)于a的等量關(guān)系,求出a,
10、將a代入得g(x)=?2x4x,g(x)在區(qū)間上是單調(diào)遞減函數(shù),可利用函數(shù)單調(diào)性的定義建立恒等關(guān)系,分離出,求出2x2+2x1的最值即可;(2)運(yùn)用參數(shù)分離,任意x,g(x)2恒成立即為即有在x恒成立令t=2x+(0 x1),運(yùn)用基本不等式求出最小值,注意檢驗(yàn)等號(hào)成立的條件,只要令不大于最小值即可解答:(1)由已知得3a+2=18?3a=2?a=log32,此時(shí)g(x)=?2x4x設(shè)0 x1x21,因?yàn)間(x)在區(qū)間上是單調(diào)減函數(shù),所以g(x1)g(x2)=(2x22x1)(+2x2+2x1)0成立,2x22x102x2+2x1恒成立,由于2x2+2x120+20=2,所以實(shí)數(shù)的取值范圍是2;
11、(2)任意x,g(x)2恒成立即為?2x4x2在x恒成立,即有在x恒成立令t=2x+(0 x1),由于2x,則2x+2=2,當(dāng)且僅當(dāng)2x=,即有x=時(shí),取得最小值2即有2則實(shí)數(shù)的取值范圍是(,2點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的判斷和運(yùn)用,考查函數(shù)恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題,以及基本不等式的運(yùn)用,屬于中檔題19. 參考答案:(本小題滿分12分)(1)證明:(方法一),。,(方法二),。 ,6分(2) ,即; 又,所以,即9分,即,又,所以,12分略20. (本題滿分10分)()已知復(fù)數(shù)()在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在第二象限,求k的取值范圍;()已知是純虛數(shù),且,求復(fù)數(shù)z.參考答案:解:()依題意得2分即4分 或.5分()依題意設(shè),6分則,7分,8分,9分 10分21. 把長(zhǎng)為10cm的細(xì)鐵絲截成兩段,各自圍成一個(gè)正方形,求這兩個(gè)正方形面積之和的最小值。參考答案:解:設(shè)鐵絲一段長(zhǎng)xcm,兩正方形面積之和為ycm2,則另一段鐵絲長(zhǎng)為(10 x)cm,依題意,ks5u當(dāng)x=5時(shí),y取最大值。答:(略)略22. 設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)0 x2時(shí),yx,當(dāng)x2時(shí),yf(x)的圖象是頂點(diǎn)為P(3,4),且過點(diǎn)A(2,2)的拋物線的一部分(1)求函數(shù)f(x)在(,2)上的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度手摩托俱樂部賽事冠名權(quán)買賣合同
- 2025年度科技成果轉(zhuǎn)化贈(zèng)與協(xié)議書范文
- 2025年浸滲膠合作協(xié)議書
- 2025年度代駕服務(wù)行業(yè)競(jìng)爭(zhēng)情報(bào)共享合同
- 2025年度商鋪?zhàn)赓U合同終止及租賃期滿退租協(xié)議
- 2025年度專業(yè)廚師團(tuán)隊(duì)定制合作合同書
- 2025年度手房買賣合同(含糾紛解決機(jī)制)
- Module8教學(xué)設(shè)計(jì)海南 2024-2025學(xué)年外研版九年級(jí)英語上冊(cè)
- 肝移植術(shù)后護(hù)理診斷
- 金屬波紋管膨脹節(jié)(鋁)項(xiàng)目績(jī)效評(píng)估報(bào)告
- 2024年高考物理真題分類匯編(全一本附答案)
- 文創(chuàng)產(chǎn)品設(shè)計(jì):文創(chuàng)產(chǎn)品設(shè)計(jì)與創(chuàng)新
- 醫(yī)藥銷售月總結(jié)匯報(bào)
- 地質(zhì)勘探行業(yè)復(fù)工安全培訓(xùn)課件
- 小學(xué)語文《文學(xué)閱讀與創(chuàng)意表達(dá)》
- 醫(yī)保定點(diǎn)納入預(yù)測(cè)性研究的報(bào)告
- 大學(xué)體育-武術(shù)散打-教案
- 年終獎(jiǎng)計(jì)算方案
- 模擬藥房實(shí)訓(xùn)總結(jié)報(bào)告
- 人工智能在智能運(yùn)維中的應(yīng)用
- 《腦科學(xué)基礎(chǔ)知識(shí)》課件
評(píng)論
0/150
提交評(píng)論