版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、新人教版八年級上冊數(shù)學1414.1.2 冪的乘方和積的乘方 14.1.2 冪的乘方和積的乘方 活動1 知識回顧 口述同底數(shù)冪的乘法法則am an = am+n (m、n都是正整數(shù)).同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.(1) ; (3) ;(5) ;(6) .(2) ;(4) ;計算:復習與回顧 活動1 am an = a2022/10/1復習-想一想(2) 323m = 5m 5n = x3 xn+1 = y yn+2 yn+4 =3m+25m+ny2n+7Xn+42022/9/28復習-想一想(2) 323m2022/10/1已知:am=2, an=3.求am+n =?.解: am+n =
2、am an =2 3=6 深入探索-議一議2022/9/28已知:am=2, an=3.解: am+n2022/10/12022/9/282022/10/1判斷下面計算是否正確,如有錯誤請改正。 ()2022/9/28判斷下面計算是否正確,如有錯誤請改正。 (2022/10/1 、如果三個正方體的棱長分別為10、104、a,其體積分別為多少?解:從上面的計算中你發(fā)現(xiàn)了什么? (104)3=1012 =1041041042022/9/28 、如果三個正方體的棱長分別為102022/10/1 (m是正整數(shù)) 根據(jù)乘方的意義及同底數(shù)冪的乘法填空,看看計算的結果有什么規(guī)律:你發(fā)現(xiàn)了什么? 66 3m2
3、022/9/28 (m是正整數(shù)2022/10/1(根據(jù) )乘方的意義(根據(jù) )同底數(shù)冪的乘法法則(根據(jù)乘法的定義)猜想:2022/9/28(根據(jù) (m是正整數(shù))根據(jù)乘方的意義及同底數(shù)冪的乘法填空,看看計算的結果有什么規(guī)律:你發(fā)現(xiàn)了什么?試一試:讀出式子探究663m活動2 (m是正整數(shù))根據(jù)乘方的意義及同底數(shù)冪的乘法填空對于任意底數(shù)a與任意正整數(shù)m,n,(乘方的意義)(同底數(shù)冪的乘法法則)(乘法的定義)(m,n都是正整數(shù))冪的乘方,底數(shù) ,指數(shù) 不變相乘冪的乘方的運算公式你能用語言敘述這個結論嗎?公式中的a可表示一個數(shù)、字母、式子等.對于任意底數(shù)a與任意正整數(shù)m,n,(乘方的意義)(同底數(shù)冪的2
4、022/10/1(1) (103)5 (2) (a4)4(3) (am)2 (4) -(x4)32022/9/28(1) (103)5 (2) 例2:計算:(1) (103)5; (2) (a4)4; (3) (am)2; (4) -(x4)3.解: (1) (103)5=1035 = 1015 ; (2) (a4)4=a44=a16; (3) (am)2= a m 2 = a 2m ; (4) -(x4)3 = - x 43 = - x12 .活動3 例2:計算:解: (1) (103)5=1035 相信你準能做對!計算: (103)3; (2) (x3)2; (3) - ( xm )5 ;
5、 (4) (a2 )3 a5;相信你準能做對!計算:2022/10/1冪的乘方法則(重點)例 2:計算:(1)(x2)3;(3)(a3)2(a2)3;(2)(x9)8;(4)(a2)3a5.思路導引:運用冪的乘方法則,運算時要先確定符號2022/9/28冪的乘方法則(重點)(1)(x2)3;(2022/10/1(a-b)3(a-b)32(x-y)22(y-x)232022/9/28(a-b)3(a-b)32(x-2022/10/1(m,n都是正整數(shù))冪的乘方的運算法則能否利用冪的乘方法則來進行計算呢?2022/9/28(m,n都是正整數(shù))冪的乘方的運算法則能2022/10/1八年級 數(shù)學練一練
6、多重乘方也具有這一性質2022/9/28八年級 數(shù)學練一練多重乘方也具有這一性2022/10/1根據(jù): 計算 1、2、(x2)37 解:原式=(x6)7 = x42解: 原式=2022/9/28根據(jù): 計算 1、2、(x2)32022/10/11(m2)3m4等于()BAm9Bm10Cm12Dm142計算:(1)(xy)26_;(2)a8(a2)4_.2a83已知 x2n3,則(xn)4_.9點拔:(xn)4x4n(x2n)2329.(xy)124已知 10a5,10b6,則 102a103b的值為_241點撥:102a103b(10a)2(10b)35263241.2022/9/281(m2
7、)3m4等于()BAm9B2022/10/1 冪的乘方的逆運算: (1)x13x7=x( )=( )5=( )4 =( )10; (2)a2m =( )2 =( )m (m為正整數(shù)). 20 x4 x5 x2am a2冪的乘方運算法則的逆用2022/9/28 20 x4 x5 x2022/10/1例 2:已知 ax3,ay2,試求 a2x+3y【規(guī)律總結】對于冪的乘方與同底數(shù)冪的乘法的混合運算,先算乘方,再算同底數(shù)冪的乘法;冪的乘方與加減混合運算時,先乘方,后加減,注意合并同類項的值冪的乘方法則的逆用amn(am)n(an)m,即 x6(x2)3(x3)2.2022/9/28例 2:已知 ax
8、3,ay2,試求 a2022/10/13(m2)3m4等于()BAm9Bm10Cm12Dm144計算:(1)(xy)26_;(2)a8(a2)4_.2a85已知 x2n3,則(xn)4_.9(xn)4x4n(x2n)2329.(xy)126已知 10a5,10b6,則 102a103b的值為_241102a103b(10a)2(10b)35263241.2022/9/283(m2)3m4等于()BAm9B2022/10/1例 2:已知 ax3,ay2,試求 a2x+3y【規(guī)律總結】對于冪的乘方與同底數(shù)冪的乘法的混合運算,先算乘方,再算同底數(shù)冪的乘法;冪的乘方與加減混合運算時,先乘方,后加減,注
9、意合并同類項的值冪的乘方法則的逆用amn(am)n(an)m,即 x6(x2)3(x3)2.2022/9/28例 2:已知 ax3,ay2,試求 a2022/10/1 1下列各式中,與x5m+1相等的是()(A)(x5)m+1 (B)(xm+1)5 (C) x (x5)m (D) x x5 xmc2x14不可以寫成()(A)x5 (x3)3 (B) (x) (x2) (x3) (x8)(C)(x7)7 (D)x3 x4 x5 x2C2022/9/28 1下列各式中,與x5m+1相等的是(2022/10/1-(x2)3 八年級 數(shù)學= -x23= -x6 ;符號怎么辦?(- x2)3 = -x2
10、3= -x6 ;-(x3)2 = -x32= - x6 ;(- x3)2 = x23= x6 ;2022/9/28-(x2)3 八年級 數(shù)學= -x22022/10/11、 計算:2342)(aaa+.解:原式=2022/9/281、 計算:2342)(aaa+.解:原式2022/10/1計算: (a-b)3(a-b)32 (x-y)22(y-x)232、2022/9/28計算: (a-b)3(a-b)32022/10/13、在255,344,433,522這四個冪中, 數(shù)值最大的一個是。解:255=2511=(25)11=3211344=3411=(34)11=8111433=4311=(4
11、3)11=6411522=5211=(52)11=2511所以數(shù)值最大的一個是_3442022/9/283、在255,344,433,522這四個運算種類公式法則中運算計算結果底數(shù)指數(shù)同底數(shù)冪乘法冪的乘方乘法乘方不變不變指數(shù)相加指數(shù)相乘活動4 運算公式法則計算結果底數(shù)指數(shù)同底數(shù)冪乘法冪的乘方乘法乘方不變 下列各式對嗎?請說出你的觀點和理由: (1) (a4)3=a7 ( ) (2) a4 a3=a12 ( ) (3) (a2)3+(a3)2=(a6)2 ( ) (4) (x3)2=(x2)3 ( ) 活動5 下列各式對嗎?請說出你的觀點和理由: 活冪的乘方的逆運算:(1)x13x7=x( )=
12、( )5=( )4=( )10; (2)a2m =( )2 =( )m (m為正整數(shù)).20 x4x5 x2 ama2冪的乘方法則的逆用活動6冪的乘方的逆運算:20 x4x5 x2 ama2冪的 已知,4483=2x,求x的值. 實踐與創(chuàng)新解:活動7 已知,4483=2x,求x的值. 實踐與創(chuàng)新解:活動2022/10/12. 已知39n=37,求:n的值1. 已知53n=25,求:n的值2022/9/282. 已知39n=37,求:n的值1.1. 已知39n=37,求:n的值2. 已知a3n=5,b2n=3,求:a6nb4n的值3. 設n為正整數(shù),且x2n=2,求9(x3n)2的值4. 已知2
13、m=a,32n=b,求:23m+10n實踐與創(chuàng)新1. 已知39n=37,求:n的值2. 已知a3n=5,2022/10/1深入探索-議一議2(1)已知2x+5y-3=0,求 4x 32y的值(2)已知 2x =a, 2y =b,求 22x+3y 的值(3)已知 22n+1 + 4n =48, 求 n 的值(4)比較375,2100的大小(5)若(9n)2 = 38 ,則n為_2022/9/28深入探索-議一議2(1)已知2x+5溫故知新1.冪的乘方的法則(m、n都是正整數(shù))冪的乘方,底數(shù)不變,指數(shù)相乘. 語言敘述 符號敘述 . 2.冪的乘方的法則可以逆用.即3.多重乘方也具有這一性質.如(其中
14、 m、n、p都是正整數(shù)).公式中的a可表示一個數(shù)、字母、式子等.溫故知新1.冪的乘方的法則(m、n都是正整數(shù))冪的乘方,底數(shù)39 計算: (23)2與22 32,你會發(fā)現(xiàn)什么?填空:62 36 4936 = (23)2= = 22 32= = (23)2 22 32結論:(23)2與22 32相等39 計算:填空:62 36 4936 觀察、猜想: (ab)3與a3b3 是什么關系呢?(ab)3=說出以上推導過程中每一步變形的依據(jù)。(ab)(ab)(ab)=(aaa) (bbb)= a3b3 乘方的意義乘方的意義乘法交換律、結合律觀察、猜想:(ab)3=說出以上推導過程中每一步變形的依據(jù)。 猜
15、想:(ab)n=anbn (n為正整數(shù)) (ab) n= (ab) (ab) (ab)n個ab=(aa a)(bb b)n個a n個b=anbn這說明以上猜想是正確的。證明:思考:積的乘方(ab)n =? 猜想:(ab)n=anbn (n為正整數(shù)) (ab) n積的乘方語言敘述: 積的乘方等于把積的每個因式分別乘方,再把所得的冪相乘。 推廣:三個或三個以上的積的乘方等于什么?(abc)n = anbncn (n為正整數(shù))(ab)n = anbn (n為正整數(shù))積的乘方語言敘述: 積的乘方等于把積的每個因式分例1:計算: (1) (-3x)3 (2) (-5ab)2(3) (xy2)2 (4)
16、(-2xy3z2)4 解:(1)原式= (2)原式= (3)原式= (4)原式= -27x3=25a2b2 =x2y4=16x4y12z8(-3)3x3(-5)2a2b2x2(y2)2(-2)4x4(y3)4(z2)4例1:計算: 解:(1)原式= (2)原式= (注意: (1)負數(shù)乘方的符號法則。(2)積的乘方等于積中“每一個”因式 乘方的積,防止有的因式漏乘方錯誤。(3)在計算(-2xy3z2)4=(-2)4x4(y3)4(z2)4 =16x4y12z8的過程中,應把y3 , z2 看作一 個數(shù),再利用積的乘方性質進行計算。 注意: (1)(ab2)3=ab6 ( ) (2) (3xy)3
17、=9x3y3 ( ) (3) (-2a2)2=-4a4 ( )(4) -(-ab2)2=a2b4 ( )判斷: ( )(1)(ab2)3=ab6 ( 1、計算: (1) (ab)8 (2) (2m)3 (3) (-xy)5 (4) (5ab2)3 (5) (2102)2 (6) (-3103)3(2)8m3(3) x5y5(4)125a3b6(5) 4104(6) -27 109答案: (1)a8b8 1、計算:(2)8m3(3) x5y5(4)125a3b62、計算: (1)(-2x2y3)3 答案(2) 81a12b8c4答案 (1) -8x6y9(2) (-3a3b2c)41 計算: a3 a4 a+(a2)4+(-2a4)2解:原式=a3+4+1+a24+(-2)2 (a4)2=a8+a8+4a8=6a8試一試:2、計算:答案(2) 81a12b8c4答案 (1) -82 計算: 2(x3)2 x3(3x3)3(5x)2 x7解:原式=2x6 x327x9+25x2 x7 注意:運算順序是先乘方,再乘除,最后算加減。=2x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智慧物業(yè)保潔服務合同及環(huán)境監(jiān)測協(xié)議3篇
- 2024租賃合同續(xù)簽協(xié)議
- 專用2024版企業(yè)員工保密協(xié)議
- 二零二五版土地抵押反擔保服務協(xié)議3篇
- 2025年新型紗窗產品售后服務與客戶滿意度調查協(xié)議3篇
- 二零二五年科技園區(qū)結對共建發(fā)展協(xié)議3篇
- 2025年度生態(tài)旅游產業(yè)地產合作投資框架協(xié)議范本4篇
- 臨時工職業(yè)協(xié)議模板(2024年度版)一
- 2025版行政合同中行政主體特權行使界限及法律后果明確協(xié)議4篇
- 二零二五年度特種管道安裝與施工服務協(xié)議4篇
- 2024版塑料購銷合同范本買賣
- 【高一上】【期末話收獲 家校話未來】期末家長會
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 有毒有害氣體崗位操作規(guī)程(3篇)
- 兒童常見呼吸系統(tǒng)疾病免疫調節(jié)劑合理使用專家共識2024(全文)
- 二年級下冊加減混合豎式練習360題附答案
- TSG11-2020 鍋爐安全技術規(guī)程
- 汽輪機盤車課件
- 異地就醫(yī)備案個人承諾書
- 蘇教版五年級數(shù)學下冊解方程五種類型50題
評論
0/150
提交評論