版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、勾股定理典型例題歸類總結(jié)題型一:直接考查勾股定理例.在中,求的長(zhǎng) ,求的長(zhǎng)跟蹤練習(xí):1.在中,.1假設(shè)a=5,b=12,那么c= ;2假設(shè)a:b=3:4,c=15,那么a= ,b= .3假設(shè)A=30,BC=2,那么AB= ,AC= .2.在RtABC中,C=90,A,B,C分別對(duì)的邊為a,b,c,那么以下結(jié)論正確的是( )A、B、C、D、3.一個(gè)直角三角形的三邊為三個(gè)連續(xù)偶數(shù),那么它的三邊長(zhǎng)分別為( )A、2、4、6B、4、6、8C、6、8、10D、3、4、54.等腰直角三角形的直角邊為2,那么斜邊的長(zhǎng)為 A、B、C、1D、25.等邊三角形的邊長(zhǎng)為2cm,那么等邊三角形的面積為 A、B、C、1
2、D、6.直角三角形的兩邊為2和3,那么第三邊的長(zhǎng)為_.7.如圖,ACB=ABD=90,AC=2,BC=1,那么BD=_.8.ABC中,AB=AC=10,BD是AC邊上的高線,CD=2,那么BD等于A、4B、6C、8D、9.RtABC的周長(zhǎng)為,其中斜邊,求這個(gè)三角形的面積。10. 如果把勾股定理的邊的平方理解為正方形的面積,那么從面積的角度來(lái)說,勾股定理可以推廣.(1)如圖,以RtABC的三邊長(zhǎng)為邊作三個(gè)等邊三角形,那么這三個(gè)等邊三角形的面積、之間有何關(guān)系?并說明理由。2如圖,以RtABC的三邊長(zhǎng)為直徑作三個(gè)半圓,那么這三個(gè)半圓的面積、之間有何關(guān)系?3如果將上圖中的斜邊上的半圓沿斜邊翻折180,
3、請(qǐng)?zhí)接憙蓚€(gè)陰影局部的面積之和與直角三角形的面積之間的關(guān)系,并說明理由。此陰影局部在數(shù)學(xué)史上稱為“希波克拉底月牙題型二:利用勾股定理測(cè)量長(zhǎng)度例1. 如果梯子的底端離建筑物9米,那么15米長(zhǎng)的梯子可以到達(dá)建筑物的高度是多少米?跟蹤練習(xí):1.如圖8,水池中離岸邊D點(diǎn)1.5米的C處,直立長(zhǎng)著一根蘆葦,出水局部BC的長(zhǎng)是0.5米,把蘆葦拉到岸邊,它的頂端B恰好落到D點(diǎn),并求水池的深度AC.2.一座建筑物發(fā)生了火災(zāi),消防車到達(dá)現(xiàn)場(chǎng)后,發(fā)現(xiàn)最多只能靠近建筑物底端5米,消防車的云梯最大升長(zhǎng)為13米,那么云梯可以達(dá)該建筑物的最大高度是A、12米B、13米C、14米D、15米3.如圖,有兩顆樹,一顆高10米,另一
4、顆高4米,兩樹相距8米一只鳥從一顆樹的樹梢飛到另一顆樹的樹梢,問小鳥至少飛行A、8米B、10米C、12米D、14米題型三:勾股定理和逆定理并用例3. 如圖3,正方形ABCD中,E是BC邊上的中點(diǎn),F(xiàn)是AB上一點(diǎn),且那么DEF是直角三角形嗎?為什么?注:此題利用了四次勾股定理,是掌握勾股定理的必練習(xí)題。跟蹤練習(xí):如圖,正方形ABCD中,E為BC邊的中點(diǎn),F(xiàn)點(diǎn)CD邊上一點(diǎn),且DF=3CF,求證:AEF=90題型四:利用勾股定理求線段長(zhǎng)度例1. 如圖4,長(zhǎng)方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點(diǎn)E,將ADE折疊使點(diǎn)D恰好落在BC邊上的點(diǎn)F,求CE的長(zhǎng).跟蹤練習(xí):1.如圖,將一個(gè)有
5、45度角的三角板頂點(diǎn)C放在一張寬為3cm的紙帶邊沿上,另一個(gè)頂點(diǎn)B在紙帶的另一邊沿上,測(cè)得三角板的一邊與紙帶的一邊所在的直線成30角,求三角板的最大邊AB的長(zhǎng).2.如圖,在ABC中,AB=BC,ABC=90,D為AC的中點(diǎn),DEDF,交AB于E,交BC于F,1求證:BE=CF;2假設(shè)AE=3,CF=1,求EF的長(zhǎng).3.如圖,CA=CB,CD=CE,ACB=ECD=90,D為AB邊上的一點(diǎn).假設(shè)AD=1,BD=3,求CD的長(zhǎng).題型五:利用勾股定理逆定理判斷垂直例1. 有一個(gè)傳感器控制的燈,安裝在門上方,離地高4.5米的墻上,任何東西只要移至5米以內(nèi),燈就自動(dòng)翻開,一個(gè)身高1.5米的學(xué)生,要走到離
6、門多遠(yuǎn)的地方燈剛好翻開?跟蹤練習(xí):1.如圖,每個(gè)小正方形的邊長(zhǎng)都是1,ABC的三個(gè)頂點(diǎn)分別在正方形網(wǎng)格的格點(diǎn)上,試判斷ABC的形狀,并說明理由.1求證:ABD=90;2求的值2.以下各組數(shù)中,以它們邊的三角形不是直角三角形的是 A、9,12,15B、7,24,25C、D、,3.在ABC中,以下說法B=C-A;A:B:C=3:4:5;a:b:c=5:4:3;:=1:2:3,其中能判斷ABC為直角三角形的條件有 A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)4.在ABC中,A、B、C的對(duì)邊分別是a、b、c.判斷以下三角形是否為直角三角形?并判斷哪一個(gè)是直角?1a=26,b=10,c=24;2a=5,b=7,c=
7、9;3a=2,A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)5.ABC的三邊長(zhǎng)為a、b、c,且滿足,那么此時(shí)三角形一定是 A、等腰三角形B、直角三角形C、等腰直角三角形D、銳角三角形6.在ABC中,假設(shè)a=,b=2n,c=,那么ABC是A、銳角三角形B、鈍角三角形C、等腰三角形D、直角三角形7.如圖,正方形網(wǎng)格中的ABC是 A、直角三角形B、銳角三角形C、鈍角三角形D、銳角三角形或鈍角三角形8.在ABC中,A、B、C的對(duì)邊分別是a、b、c,以下說法中,錯(cuò)誤的是 A、如果C-B=A,那么C=90B、如果C=90,那么C、如果a+ba-b=,那么A=90D、如果A=30,那么AC=2BC9.ABC的三邊分別為a
8、,b,c,且a+b=3,ab=1,求的值,試判斷ABC的形狀,并說明理由10.觀察以下各式:,根據(jù)其中規(guī)律,寫出下一個(gè)式子為_11.,mn,m、n為正整數(shù),以,2mn,為邊的三角形是_三角形.12.一個(gè)直角三角形的三邊分別為n+1,n-1,8,其中n+1是最大邊,當(dāng)n為多少時(shí),三角形為直角三角形?題型六:旋轉(zhuǎn)問題:例題6. 如圖,P是等邊三角形ABC內(nèi)一點(diǎn),PA=2,PB=,PC=4,求ABC的邊長(zhǎng).跟蹤練習(xí)1.如圖,ABC為等腰直角三角形,BAC=90,E、F是BC上的點(diǎn),且EAF=45,試探究間的關(guān)系,并說明理由. 題型七:關(guān)于翻折問題例題7.如圖,矩形紙片ABCD的邊AB=10cm,BC
9、=6cm,E為BC上一點(diǎn),將矩形紙片沿AE折疊,點(diǎn)B恰好落在CD邊上的點(diǎn)G處,求BE的長(zhǎng).跟蹤練習(xí)1.如圖,AD是ABC的中線,ADC=45,把ADC沿直線AD翻折,點(diǎn)C落在點(diǎn)C的位置,BC=4,求BC的長(zhǎng).折疊直角三角形1.如圖,在ABC中,A = 90,點(diǎn)D為AB上一點(diǎn),沿CD折疊ABC,點(diǎn)A恰好落在BC邊上的處,AB=4,AC=3,求BD的長(zhǎng)。2. 如圖,RtABC中,B=90,AB=3,AC=5將ABC折疊使C與A重合,折痕為DE,求BE的長(zhǎng)二折疊長(zhǎng)方形1.如圖,長(zhǎng)方形ABCD中,AB=4,BC=5,F(xiàn)為CD上一點(diǎn),將長(zhǎng)方形沿折痕AF折疊,點(diǎn)D恰好落在BC上的點(diǎn)E處,求CF的長(zhǎng)。2.
10、如圖,長(zhǎng)方形ABCD中,AD=8cm,AB=4cm,沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C與C重合. 1求DE的長(zhǎng);2求折痕EF的長(zhǎng).3. 2023常德如圖,將長(zhǎng)方形紙片ABCD折疊,使邊CD落在對(duì)角線AC上,折痕為CE,且D點(diǎn)落在對(duì)角線D處假設(shè)AB=3,AD=4,那么ED的長(zhǎng)為4. 如圖,長(zhǎng)方形ABCD中,AB=6,AD=8,沿BD折疊使A到A處DA交BC于F點(diǎn). 1求證:FB=FE2求證:CABD3求DBF的面積7. 如圖,正方形ABCD中,點(diǎn)E在邊CD上,將ADE沿AE對(duì)折至AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,G為BC的中點(diǎn),連結(jié)AG、CF. 1求證:AGCF;2求的值.題型八:關(guān)于勾股定理在實(shí)
11、際中的應(yīng)用:例1、如圖,公路MN和公路PQ在P點(diǎn)處交匯,點(diǎn)A處有一所中學(xué),AP=160米,點(diǎn)A到公路MN的距離為80米,假使拖拉機(jī)行駛時(shí),周圍100米以內(nèi)會(huì)受到噪音影響,那么拖拉機(jī)在公路MN上沿PN方向行駛時(shí),學(xué)校是否會(huì)受到影響,請(qǐng)說明理由;如果受到影響,拖拉機(jī)的速度是18千米/小時(shí),那么學(xué)校受到影響的時(shí)間為多少?例2.一輛裝滿貨物高為1.8米,寬1.5米的卡車要通過一個(gè)直徑為5米的半圓形雙向行駛隧道,它能順利通過嗎?跟蹤練習(xí):某市氣象臺(tái)測(cè)得一熱帶風(fēng)暴中心從A城正西方向300km處,以每小時(shí)26km的速度向北偏東60方向移動(dòng),距風(fēng)暴中心200km的范圍內(nèi)為受影響區(qū)域。試問2.一輛裝滿貨物的卡車
12、,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如以下圖的某工廠,問這輛卡車能否通過該工廠的廠門?3.有一個(gè)邊長(zhǎng)為50dm 的正方形洞口,想用一個(gè)圓蓋去蓋住這個(gè)洞口,圓的直徑至少多長(zhǎng)?結(jié)果保存整數(shù)4.如圖,鐵路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DAAB于A,CBAB于B,DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等,那么E站應(yīng)建在離A站多少km處?題型九:關(guān)于最短性問題例1、如右圖119,壁虎在一座底面半徑為2米,高為4米的油罐的下底邊沿A處,它發(fā)現(xiàn)在自己的正上方油罐上邊緣的B處有一只害蟲,便決定捕捉這只害蟲,為了不引起害蟲的注
13、意,它成心不走直線,而是繞著油罐,沿一條螺旋路線,從背后對(duì)害蟲進(jìn)行突然襲擊結(jié)果,壁虎的偷襲得到成功,獲得了一頓美餐請(qǐng)問壁虎至少要爬行多少路程才能捕到害蟲?取3.14,結(jié)果保存1位小數(shù),可以用計(jì)算器計(jì)算例2.跟蹤練習(xí):1.如圖為一棱長(zhǎng)為3cm的正方體,把所有面都分為9個(gè)小正方形,其邊長(zhǎng)都是1cm,假設(shè)一只螞蟻每秒爬行2cm,那么它從下地面A點(diǎn)沿外表爬行至右側(cè)面的B點(diǎn),最少要花幾秒鐘?2.如圖,是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬和高分別等于5cm,3cm和1cm,A和B是這個(gè)臺(tái)階的兩個(gè)相對(duì)的端點(diǎn),A點(diǎn)上有一只螞蟻,想到B點(diǎn)去吃可口的食物.請(qǐng)你想一想,這只螞蟻從A點(diǎn)出發(fā),沿著臺(tái)階面爬到B點(diǎn),最短線路
14、是多少?BBA5313.一個(gè)長(zhǎng)方體盒子的長(zhǎng)、寬、高分別為8cm,6cm,12cm,一只螞蟻想從盒底的A點(diǎn)爬到盒頂?shù)腂點(diǎn),你能幫螞蟻設(shè)計(jì)一條最短的線路嗎?螞蟻要爬行的最短路程是多少?BBAA4.如圖將一根13.5厘米長(zhǎng)的細(xì)木棒放入長(zhǎng)、寬、高分別為4厘米、3厘米和12厘米的長(zhǎng)方體無(wú)蓋盒子中,能全部放進(jìn)去嗎?33?A題型十:勾股定理與特殊角直接運(yùn)用30或45的直角三角形1.如圖,在ABC中,C = 90,B = 30,AD是ABC的角平分線,假設(shè)AC=,求AD的長(zhǎng)。2.如圖,在ABC中,ACB = 90,AD是ABC的角平分線,CDAB于D,A= 30,CD=2,求AB的長(zhǎng)。3.如圖,在ABC中,A
15、DBC于D,B= 60,,C= 45,AC=2,求BD的長(zhǎng)。作垂線構(gòu)造30或45的直角三角形將105轉(zhuǎn)化為45和601.如圖,在ABC中,B= 45,A=105,AC=2,求BC的長(zhǎng)。2.如圖,在四邊形ABCD中,A=C= 45,ADB=ABC=105,= 1 * GB2假設(shè)AD=2,求AB的長(zhǎng);= 2 * GB2假設(shè)AB+CD=+2,求AB的長(zhǎng)。AABDC2將75轉(zhuǎn)化為30和453.如圖,在ABC中,B= 45,BAC=75,AB= ,求BC的長(zhǎng)。題型十一:運(yùn)用勾股定理列方程一直接用勾股定理列方程1.如圖,在ABC中,C= 90,AD平分CAB交CB于D,CD=3,BD=5,求AD的長(zhǎng)。2.
16、如圖,在ABC中,ADBC于D,且CAD=2BAD,假設(shè)BD=3,CD=8,求AB的長(zhǎng)。(二)巧用“連環(huán)勾列方程1.如圖,在ABC中,AB=5,BC=7,AC=,求.2.如圖,在ABC中,ACB= 90,CDAB于D,AC=3,BC=4,求AD的長(zhǎng)。3. 如圖,ABC中,ACB=90,CDAB于D,AD=1,BD=4,求AC的長(zhǎng)4.如圖,ABC中,ACB=90,CDAB于D,CD=3,BD=4,求AD的長(zhǎng)題型十二:勾股定理與分類討論銳角與鈍角不明時(shí)需分類討論1.在ABC中,AB=AC=5,求BC的長(zhǎng)2. 在ABC中,AB=15,AC=13,AD為ABC的高,且AD=12,求ABC的面積。二腰和
17、底不明時(shí)需分類討論3.如圖1,ABC中,ACB=90,AC=6,BC=8,點(diǎn)D為射線AC上一點(diǎn),且ABD是等腰三角形,求ABD的周長(zhǎng).三直角邊和斜邊不明時(shí)需分類討論1.直角三角形兩邊分別為2和3,那么第三邊的長(zhǎng)為_2.在ABC中,ACB=90,AC=4,BC=2,以AB為邊向外作等腰直角三角形ABD,求CD的長(zhǎng)3.如圖,D(2,1),以O(shè)D為一邊畫等腰三角形,并且使另一個(gè)頂點(diǎn)在x軸上,這樣的等腰三角形能畫多少個(gè)?寫出落在x軸上的頂點(diǎn)坐標(biāo).題型十三:或問題的證明1.如圖1,ABC中,CA=CB,ACB=90,D為AB的中點(diǎn),M、N分別為AC、BC上一點(diǎn),且DMDN.1求證:CM+CN=BD2如圖
18、2,假設(shè)M、N分別在AC、CB的延長(zhǎng)線上,探究CM、CN、BD之間的數(shù)量關(guān)系式。2.BCD=,BAD=,CB=CD.1如圖1,假設(shè)=90,求證:AB+AD=AC;2如圖2,假設(shè)=90,求證:AB-AD=AC;3如圖3,假設(shè)=120,=60,求證:AB=AD=AC;4如圖3,假設(shè)=120,求證:AB-AD=AC;題型十四:?jiǎn)栴}的證明1.如圖,OA=OB,OC=OD,AOB=COD=90,M、N分別為AC、BD的中點(diǎn),連MN、ON.求證:MN=ON.2.ABC中,AB=AC,BAC=90,D為BC的中點(diǎn),AE=CF,連DE、EF.1如圖1,假設(shè)E、F分別在AB、AC上,求證:EF=DE;2如圖2,
19、假設(shè)E、F分別在BA、AC的延長(zhǎng)線上,那么(1)中的結(jié)論是否仍成立?請(qǐng)說明理由3.如圖,ABD中,O為AB的中點(diǎn),C為DO延長(zhǎng)線上一點(diǎn),ACO=135,ODB=45探究OD、OC、AC之間相等的數(shù)量關(guān)系4.如圖,ABD是等腰直角,BAD=90,BCAD,BC=2AB,CE平分BCD,交AB于E,交BD于H求證:1DC=DA;2BE=DH題型十五:勾股定理逆定理與網(wǎng)格畫圖1.如圖,每個(gè)小正方形的邊長(zhǎng)為1,A、B、C是小正方形的頂點(diǎn),那么ABC的度數(shù)為2.如圖,每個(gè)小正方形的邊長(zhǎng)都是1,在圖中畫一個(gè)三角形,使它的三邊長(zhǎng)分別是3,2,且三角形的三個(gè)頂點(diǎn)都在格點(diǎn)上3.如圖,每個(gè)小正方形的邊長(zhǎng)都是1,在
20、圖中畫一個(gè)邊長(zhǎng)為的正方形,且正方形的四個(gè)頂點(diǎn)在格點(diǎn)上4.在圖中以格點(diǎn)為頂點(diǎn)畫一個(gè)等腰三角形,使其內(nèi)部已標(biāo)注的格點(diǎn)只有3個(gè)5.如圖,在4個(gè)均勻由16個(gè)小正方形組成的網(wǎng)格正方形中,各有一個(gè)格點(diǎn)三角形,那么這4個(gè)三角形中,與眾不同的是_中的三角形,圖4中最長(zhǎng)邊上的高為_6.如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按以下要求畫圖:1畫一條線段MN,使MN=;2畫ABC,三邊長(zhǎng)分別為3,2。7.如圖,在55的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的端點(diǎn)在格點(diǎn)上1圖1中以AB為腰的等腰三角形有_個(gè),畫出其中的一個(gè),并直接寫出其底邊長(zhǎng)2圖2中,以AB為底邊的等腰三角形有_個(gè),畫出其中的一個(gè),并直接寫出其底邊上的高題型十六:利用勾股定理逆定理證垂直1.如圖,在ABC中,點(diǎn)D為BC邊上一點(diǎn),且AB=10,BD=6,AD=8,AC=7,其求C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 IEC 62841-3-8:2024 EXV EN Electric motor-operated hand-held tools,transportable tools and lawn and garden machinery - Safety - Part 3-8: Particular requirements for transpo
- 2024年室內(nèi)設(shè)計(jì)師年終工作總結(jié)參考樣本(四篇)
- 2024年和田二手房購(gòu)房合同(四篇)
- 2024年南京房屋租賃合同參考范文(三篇)
- 2024年圖書管理員個(gè)人工作計(jì)劃范本(二篇)
- 2024年小學(xué)營(yíng)養(yǎng)餐管理制度例文(三篇)
- 2024年幼兒園小班下學(xué)期工作計(jì)劃(五篇)
- 2024年大班上學(xué)期工作計(jì)劃樣本(二篇)
- 2024年奶茶店創(chuàng)業(yè)計(jì)劃書樣本(四篇)
- 2024年大型商場(chǎng)房屋出租合同(三篇)
- 2024年部編新改版語(yǔ)文小學(xué)一年級(jí)上冊(cè)期中考試檢測(cè)題(有答案)
- GB/T 44109-2024信息技術(shù)大數(shù)據(jù)數(shù)據(jù)治理實(shí)施指南
- 《扣件式鋼管腳手架安全技術(shù)規(guī)范》JGJ130-2023
- 廣東省清遠(yuǎn)市英德市2023-2024學(xué)年八年級(jí)上學(xué)期期中物理試題
- 部編人教版五年級(jí)數(shù)學(xué)上冊(cè)《【全冊(cè)】完整版》精品PPT教學(xué)課件
- 室內(nèi)裝飾裝修工程施工組織設(shè)計(jì)方案(完整版)
- 榆林市第十二中學(xué)第二個(gè)五年發(fā)展規(guī)劃
- 廣西珍貴樹種發(fā)展規(guī)劃(2011~2020年)講解
- 盤縣紅果鎮(zhèn)上紙廠煤礦(技改)45萬(wàn)ta項(xiàng)目環(huán)境影響評(píng)價(jià)報(bào)告書
- 李居明大師趣談十二生肖
評(píng)論
0/150
提交評(píng)論