下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、天津河?xùn)|區(qū)育杰中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理模擬試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 我們學(xué)過平面向量(二維向量),空間向量(三位向量),二維、三維向量的坐標(biāo)表示及其運(yùn)算可以推廣到n(n3)維向量。n維向量可用 (,)表示設(shè)(,),設(shè)(,),a與b夾角的余弦值為當(dāng)兩個(gè)n維向量,(1,1,1,1),(1,1,1,1,1)時(shí), ( )A B C D 參考答案:D略2. 給定兩個(gè)命題,.若是的必要而不充分條件,則是的( )A充分而不必要條件 B必要而不充分條件 C充要條件 D.既不充分也不必要條件參考答案:A3.
2、 定義在上的奇函數(shù),當(dāng)0時(shí), 則關(guān)于的函數(shù)(01,則y=x+的最小值為_參考答案:12. 已知直線l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (為參數(shù)).若直線l與圓C有公共點(diǎn),則實(shí)數(shù)a的取值范圍是_.參考答案:試題分析:直線的普通方程為,圓C的普通方程為,圓C的圓心到直線的距離,解得.考點(diǎn):參數(shù)方程與普通方程的轉(zhuǎn)化、點(diǎn)到直線的距離.13. 現(xiàn)有12件不同類別的商品擺放在貨架上,擺成上層4件下層8件,現(xiàn)要從下層8件中取2件調(diào)整到上層,若其他商品的相對順序不變,則不同調(diào)整方法的種數(shù)是_種(用數(shù)字作答)參考答案:84014. 已知圓O:x2+y2=1及點(diǎn)A(2,0),點(diǎn)P(x0,y0)(y00
3、)是圓O上的動(dòng)點(diǎn),若OPA60,則x0的取值范圍是參考答案:(1,)考點(diǎn):直線與圓的位置關(guān)系專題:計(jì)算題;直線與圓分析:考慮當(dāng)OPA=60時(shí),x0的取值,即可得出結(jié)論解答:解:當(dāng)OPA=60時(shí),設(shè)AP=x,則由余弦定理可得4=1+x2+2,x=,SOPA=由等面積可得|y0|=,x0=(正數(shù)舍去),OPA60,x0的取值范圍是(1,)故答案為:(1,)點(diǎn)評:本題考查直線與圓的位置關(guān)系,考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題15. 在區(qū)間1,1上隨機(jī)取一個(gè)數(shù)x,則cos的值介于0到之間的概率為參考答案:【考點(diǎn)】等可能事件的概率【分析】本題考查的知識(shí)點(diǎn)是幾何概型,由于函數(shù)co
4、s是一個(gè)偶函數(shù),故可研究出cosx的值介于0到0.5之間對應(yīng)線段的長度,再將其代入幾何概型計(jì)算公式進(jìn)行求解【解答】解:由于函數(shù)cos是一個(gè)偶函數(shù),可將問題轉(zhuǎn)化為在區(qū)間0,1上隨機(jī)取一個(gè)數(shù)x,則cos的值介于0到之間的概率在區(qū)間0,1上隨機(jī)取一個(gè)數(shù)x,即x0,1時(shí),要使cosx的值介于0到0.5之間,需使xx1,區(qū)間長度為,由幾何概型知 cosx的值介于0到0.5之間的概率為故答案為:16. 已知點(diǎn),直線l過點(diǎn)且與線段AB相交,則直線l的斜率k的取值范圍是A. B. C. D.參考答案:A略17. 若復(fù)數(shù)z滿足z|z|34i,則_.參考答案:略三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文
5、字說明,證明過程或演算步驟18. (本小題滿分13分)在四棱錐中,底面, , 且.(1)若是的中點(diǎn),求證:平面;(2)求二面角的余弦值參考答案:解:(1)如圖,建立空間直角坐標(biāo)系連接,易知為等邊三角形,則又易知平面的法向量為 , 由,得,所以平面6分(2)在中,,則,由正弦定理,得,即,所以,設(shè)平面的法向量為,由,令,則,即10分 又平面的法向量為,所以, 即二面角的余弦值為13分19. 已知p:(x+2)(x2)0q:x23x40,若pq為假,pq為真求實(shí)數(shù)x的取值范圍參考答案:【考點(diǎn)】復(fù)合命題的真假;命題的真假判斷與應(yīng)用【分析】若pq為假,pq為真則命題p,q一真一假,進(jìn)而可得實(shí)數(shù)x的取值
6、范圍【解答】解:解(x+2)(x2)0得:x2,2,故命題p:x2,2解x23x40得:x1,4,故命題q:x1,4,若pq為假,pq為真則命題p,q一真一假,當(dāng)p真q假時(shí),x2,1),當(dāng)p假q真時(shí),x(2,4,綜上可得實(shí)數(shù)x的取值范圍為:2,1)(2,4【點(diǎn)評】本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,二次不等式的解法等知識(shí)點(diǎn),難度中檔20. 已知集合,集合.()若是的充分不必要條件,求實(shí)數(shù)m的取值范圍;()若是的充分不必要條件,求實(shí)數(shù)m的取值范圍.參考答案:解: ,()依題意, 或 或()依題意, 即 21. 正四棱臺(tái)的側(cè)棱長為3cm,兩底面邊長分別為1cm和5cm,求該正四棱臺(tái)的
7、體積參考答案:解:22. 已知拋物線C的方程為y2=2px(p0),拋物線的焦點(diǎn)到直線l:y=2x+2的距離為()求拋物線C的方程;()設(shè)點(diǎn)R(x0,2)在拋物線C上,過點(diǎn)Q(1,1)作直線交拋物線C于不同于R的兩點(diǎn)A,B,若直線AR,BR分別交直線l于M,N兩點(diǎn),求|MN|最小時(shí)直線AB的方程參考答案:【考點(diǎn)】拋物線的簡單性質(zhì)【分析】()可以得到拋物線的焦點(diǎn)為,而根據(jù)點(diǎn)到直線的距離公式得到,而由p0即可得出p=2,從而得出拋物線方程為y2=4x;()容易求出R點(diǎn)坐標(biāo)為(1,2),可設(shè)AB:x=m(y1)+1,直線AB方程聯(lián)立拋物線方程消去x可得到y(tǒng)24my+4m4=0,從而有y1+y2=4m,y1y2=4m4可寫出直線AR的方程,聯(lián)立y=2x+2即可得出,而同理可得到,這樣即可求出,從而看出m=1時(shí),|MN|取到最小值,并且可得出此時(shí)直線AB的方程【解答】解:()拋物線的焦點(diǎn)為,得p=2,或6(舍去);拋物線C的方程為y2=4x;()點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第四單元 走進(jìn)法治天下(B卷·知識(shí)通關(guān)練) 帶解析
- 紙品代理合同
- 班主任與學(xué)生共同寫下青春計(jì)劃
- 外貿(mào)類實(shí)習(xí)報(bào)告模板集錦8篇
- 下車間實(shí)習(xí)報(bào)告范文錦集五篇
- 森林防火年度工作總結(jié)范本7篇
- 2022紀(jì)念五四運(yùn)動(dòng)心得體會(huì)
- 百年孤獨(dú)讀書心得體會(huì)范文
- 以課堂話題的作文
- 感恩的演講稿15篇
- 2024-2030年中國不銹鋼生物反應(yīng)器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報(bào)告
- GB 32032-2024金礦開采、選冶和金精煉單位產(chǎn)品能源消耗限額
- 人教版生物八年級(jí)下冊課堂同步練習(xí)試題及答案 全冊
- 手術(shù)部位標(biāo)識(shí)標(biāo)準(zhǔn)
- 耳機(jī)基本知識(shí)入門培訓(xùn)資料
- MOOC 傳熱學(xué)-西安交通大學(xué) 中國大學(xué)慕課答案
- 反保險(xiǎn)欺詐主題教育課件
- 口腔營銷培訓(xùn)
- 《歌劇魅影》音樂賞析
- 2023年浙江省高考1月化學(xué)真題試卷及答案
- 企業(yè)開放日活動(dòng)方案
評論
0/150
提交評論