小學(xué)奧數(shù)34個(gè)解答公式 30類(lèi)對(duì)應(yīng)經(jīng)典題型_第1頁(yè)
小學(xué)奧數(shù)34個(gè)解答公式 30類(lèi)對(duì)應(yīng)經(jīng)典題型_第2頁(yè)
小學(xué)奧數(shù)34個(gè)解答公式 30類(lèi)對(duì)應(yīng)經(jīng)典題型_第3頁(yè)
小學(xué)奧數(shù)34個(gè)解答公式 30類(lèi)對(duì)應(yīng)經(jīng)典題型_第4頁(yè)
小學(xué)奧數(shù)34個(gè)解答公式 30類(lèi)對(duì)應(yīng)經(jīng)典題型_第5頁(yè)
已閱讀5頁(yè),還剩135頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、歡迎!請(qǐng)認(rèn)真閱讀后下載第第 頁(yè)小學(xué)奧數(shù)34個(gè)解答公式+30類(lèi)對(duì)應(yīng)經(jīng)典題型(附答案及解析)1、和差倍問(wèn)題:和差問(wèn)題和倍問(wèn)題差倍問(wèn)題已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)公式適用范圍已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系公式(和差)2=較小數(shù)較小數(shù)差=較大數(shù)和較小數(shù)=較大數(shù)(和差)2=較大數(shù)較大數(shù)差=較小數(shù)和較大數(shù)=較小數(shù)和(倍數(shù)1)=小數(shù)小數(shù)倍數(shù)=大數(shù)和小數(shù)=大數(shù)差(倍數(shù)-1)=小數(shù)小數(shù)倍數(shù)=大數(shù)小數(shù)差=大數(shù)關(guān)鍵問(wèn)題求出同一條件下的和與差和與倍數(shù)差與倍數(shù)2、年齡問(wèn)題基本特征:兩個(gè)人的年齡差是不變的;兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;3、歸一問(wèn)題的基本特點(diǎn)

2、:?jiǎn)栴}中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”等詞語(yǔ)來(lái)表示。關(guān)鍵問(wèn)題:根據(jù)題目中的條件確定并求出單一量;4、植樹(shù)問(wèn)題:基本類(lèi)型在直線或者不封閉的曲線上植樹(shù),兩端都植樹(shù)在直線或者不封閉的曲線上植樹(shù),兩端都不植樹(shù)在直線或者不封閉的曲線上植樹(shù),只有一端植樹(shù)封閉曲線上植樹(shù)基本公式棵數(shù)=段數(shù)1棵距段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)1棵距段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)棵距段數(shù)=總長(zhǎng)關(guān)鍵問(wèn)題確定所屬類(lèi)型,從而確定棵數(shù)與段數(shù)的關(guān)系5、雞兔同籠問(wèn)題:基本概念:雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);基本思路:假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):假設(shè)后,發(fā)生了和題目

3、條件不同的差,找出這個(gè)差是多少;每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差?;竟剑喊阉须u假設(shè)成兔子:雞數(shù)(兔腳數(shù)總頭數(shù)總腳數(shù))(兔腳數(shù)雞腳數(shù))把所有兔子假設(shè)成雞:兔數(shù)(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))關(guān)鍵問(wèn)題:找出總量的差與單位量的差。6、盈虧問(wèn)題:基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭俊;舅悸罚合葘煞N分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意

4、求出對(duì)象的總量?;绢}型:一次有余數(shù),另一次不足;基本公式:總份數(shù)(余數(shù)不足數(shù))兩次每份數(shù)的差當(dāng)兩次都有余數(shù);基本公式:總份數(shù)(較大余數(shù)一較小余數(shù))兩次每份數(shù)的差當(dāng)兩次都不足;基本公式:總份數(shù)(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。關(guān)鍵問(wèn)題:確定對(duì)象總量和總的組數(shù)。7、牛吃草問(wèn)題:基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量?;咎攸c(diǎn):原草量和新草生長(zhǎng)速度是不變的;關(guān)鍵問(wèn)題:確定兩個(gè)不變的量?;竟剑荷L(zhǎng)量=(較長(zhǎng)時(shí)間長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間短時(shí)間牛頭數(shù))(長(zhǎng)時(shí)間

5、-短時(shí)間);總草量=較長(zhǎng)時(shí)間長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間生長(zhǎng)量;8、周期循環(huán)與數(shù)表規(guī)律:周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。關(guān)鍵問(wèn)題:確定循環(huán)周期。閏 年:一年有366天;年份能被4整除;如果年份能被100整除,則年份必須能被400整除;平 年:一年有365天。年份不能被4整除;如果年份能被100整除,但不能被400整除;9、平均數(shù):基本公式:平均數(shù)=總數(shù)量總份數(shù)總數(shù)量=平均數(shù)總份數(shù)總份數(shù)=總數(shù)量平均數(shù)平均數(shù)=基準(zhǔn)數(shù)每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和總份數(shù)基本算法:求出總數(shù)量以及總份數(shù),利用基本公式進(jìn)行計(jì)算.基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定

6、一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式10、抽屜原理:抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。抽屜原則二:如

7、果把n個(gè)物體放在m個(gè)抽屜里,其中nm,那么必有一個(gè)抽屜至少有:k=n/m +1個(gè)物體:當(dāng)n不能被m整除時(shí)。k=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。理解知識(shí)點(diǎn):X表示不超過(guò)X的最大整數(shù)。例4.351=4;0.321=0;2.9999=2;關(guān)鍵問(wèn)題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。11、定義新運(yùn)算:基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過(guò)程、規(guī)律進(jìn)行運(yùn)算。關(guān)鍵問(wèn)題:正確理解定義的運(yùn)算符號(hào)的意義。注意事項(xiàng):新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別

8、注意運(yùn)算順序。每個(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。12、數(shù)列求和:等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列?;靖拍睿菏醉?xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n,sn,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)?;竟剑和?xiàng)公式:an = a1+(

9、n1)d;通項(xiàng)首項(xiàng)(項(xiàng)數(shù)一1)公差;數(shù)列和公式:sn,= (a1+ an)n2;數(shù)列和(首項(xiàng)末項(xiàng))項(xiàng)數(shù)2;項(xiàng)數(shù)公式:n= (an+ a1)d1;項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差1;公差公式:d =(ana1)(n1);公差=(末項(xiàng)首項(xiàng))(項(xiàng)數(shù)1);關(guān)鍵問(wèn)題:確定已知量和未知量,確定使用的公式;13、二進(jìn)制及其應(yīng)用:十進(jìn)制:用09十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+A310

10、2+A2101+A1100注意:N0=;N=N(其中N是任意自然數(shù))二進(jìn)制:用01兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+A322+A221+A120注意:An不是0就是1。十進(jìn)制化成二進(jìn)制:根據(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫(xiě)出即可。先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開(kāi)式特點(diǎn)即可寫(xiě)出。14、加法乘法原理和計(jì)數(shù):加法原理:如果完成一件

11、任務(wù)有n類(lèi)方法,在第一類(lèi)方法中有m1種不同方法,在第二類(lèi)方法中有m2種不同方法,在第n類(lèi)方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2 +mn種不同的方法。關(guān)鍵問(wèn)題:確定工作的分類(lèi)方法?;咎卣鳎好恳环N方法都可完成任務(wù)。乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1m2mn種不同的方法。關(guān)鍵問(wèn)題:確定工作的完成步驟?;咎卣鳎好恳徊街荒芡瓿扇蝿?wù)的一部分。直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。直線特點(diǎn):沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度

12、。線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。線段特點(diǎn):有兩個(gè)端點(diǎn),有長(zhǎng)度。射線:把直線的一端無(wú)限延長(zhǎng)。射線特點(diǎn):只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。數(shù)線段規(guī)律:總數(shù)1+2+3+(點(diǎn)數(shù)一1);數(shù)角規(guī)律=1+2+3+(射線數(shù)一1);數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)寬的線段數(shù):數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=11+22+33+行數(shù)列數(shù)15、質(zhì)數(shù)與合數(shù):質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除

13、法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N= ,其中a1、a2、a3an都是合數(shù)N的質(zhì)因數(shù),且a1a2a3an。求約數(shù)個(gè)數(shù)的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。16、約數(shù)與倍數(shù):約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。最大公約數(shù)的性質(zhì):1、 幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。2、 幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。3、 幾個(gè)數(shù)的公約數(shù),都是這

14、幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。4、 幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。例如:12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有:1、2、3、6、9、18;那么12和18的公約數(shù)有:1、2、3、6;那么12和18最大的公約數(shù)是:6,記作(12,18)=6;求最大公約數(shù)基本方法:1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。2、短除法:先找公有的約數(shù),然后相乘。3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。12的倍數(shù)有:

15、12、24、36、48;18的倍數(shù)有:18、36、54、72;那么12和18的公倍數(shù)有:36、72、108;那么12和18最小的公倍數(shù)是36,記作12,18=36;最小公倍數(shù)的性質(zhì):1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法17、數(shù)的整除:基本概念和符號(hào):1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“ ”;因?yàn)榉?hào)“”,所以的符號(hào)“”;整除判斷方法

16、:1.能被2、5整除:末位上的數(shù)字能被2、5整除。2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。4.能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。5.能被7整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。6.能被11整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。7.能被13整除:末三位上數(shù)字所組成的數(shù)與末三

17、位以前的數(shù)字所組成的數(shù)之差能被13整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。整除的性質(zhì):1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。2.如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。3.如果a能被b整除,b又能被c整除,那么a也能被c整除。4.如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。18、余數(shù)及其應(yīng)用:基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得ab=qr,且0rb,那么r叫做a除以b的余數(shù),q叫做a除以b的不完全商。余數(shù)的性質(zhì):余數(shù)小于除數(shù)。若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。a與b的和除以c的余數(shù)等于a除

18、以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。19、余數(shù)、同余與周期:同余的定義:若兩個(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作ab(mod m),讀作a同余于b模m。同余的性質(zhì):自身性:aa(mod m);對(duì)稱性:若ab(mod m),則ba(mod m);傳遞性:若ab(mod m),bc(mod m),則a c(mod m);和差性:若ab(mod m),cd(mod m),則a+cb+d(mod m),a-cb-d(mod m);相乘

19、性:若a b(mod m),cd(mod m),則ac bd(mod m);乘方性:若ab(mod m),則anbn(mod m);同倍性:若a b(mod m),整數(shù)c,則ac bc(mod mc);關(guān)于乘方的預(yù)備知識(shí):若A=ab,則MA=Mab=(Ma)b若B=c+d則MB=Mc+d=McMd被3、9、11除后的余數(shù)特征:一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則Mn(mod 9)或(mod 3);一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則MY-X或M11-(X-Y)(mod 11);費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整

20、除,則ap-11(mod p)。20、分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用:基本概念與性質(zhì):分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。常用方法:逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。轉(zhuǎn)化思維方法:把一類(lèi)應(yīng)用題轉(zhuǎn)化成另一類(lèi)應(yīng)用題進(jìn)行解答。最常見(jiàn)的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見(jiàn)

21、的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。量不變思維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。21、分?jǐn)?shù)大小的比較

22、:基本方法:通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。基準(zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。分子和分母大小比較法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。倍率比較法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見(jiàn)同倍率變化規(guī)律)轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。倒數(shù)比較

23、法:利用倒數(shù)比較大小,然后確定原數(shù)的大小?;鶞?zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。22、分?jǐn)?shù)拆分:將一個(gè)分?jǐn)?shù)單位分解成兩個(gè)分?jǐn)?shù)之和的公式:23、完全平方數(shù):完全平方數(shù)特征:1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。2.除以3余0或余1;反之不成立。3.除以4余0或余1;反之不成立。4.約數(shù)個(gè)數(shù)為奇數(shù);反之成立。5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6.奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。7.兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=

24、X2-2XY+Y224、比和比例:比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。比例尺:圖上距離與實(shí)際距離的比叫做比例尺。按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。25、綜

25、合行程:基本概念:行程問(wèn)題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.基本公式:路程=速度時(shí)間;路程時(shí)間=速度;路程速度=時(shí)間關(guān)鍵問(wèn)題:確定運(yùn)動(dòng)過(guò)程中的位置和方向。相遇問(wèn)題:速度和相遇時(shí)間=相遇路程(請(qǐng)寫(xiě)出其他公式)追及問(wèn)題:追及時(shí)間路程差速度差(寫(xiě)出其他公式)流水問(wèn)題:順?biāo)谐?(船速+水速)順?biāo)畷r(shí)間逆水行程=(船速-水速)逆水時(shí)間順?biāo)俣?船速+水速逆水速度=船速-水速靜水速度=(順?biāo)俣?逆水速度)2水 速=(順?biāo)俣?逆水速度)2流水問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。過(guò)橋問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。主要方法:畫(huà)線段圖法基本題型:已知

26、路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。26、工程問(wèn)題:基本公式:工作總量=工作效率工作時(shí)間工作效率=工作總量工作時(shí)間工作時(shí)間=工作總量工作效率基本思路:假設(shè)工作總量為“1”(和總工作量無(wú)關(guān));假設(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.關(guān)鍵問(wèn)題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。27、邏輯推理:條件分析假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說(shuō)明該假設(shè)情況是不成立的,那么與他的相反情

27、況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過(guò)程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。條件分析列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來(lái)輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。條件分析圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒(méi)有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒(méi)有表示不認(rèn)識(shí)。邏輯計(jì)算:在推理的過(guò)程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為

28、推理提供一個(gè)新的判斷篩選條件。簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問(wèn)題的解決。28、幾何面積:基本思路:在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。常用方法:1.連輔助線方法2.利用等底等高的兩個(gè)三角形面積相等。3.大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說(shuō)的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。4.利用特殊規(guī)律等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以

29、4等于等腰直角三角形的面積)梯形對(duì)角線連線后,兩腰部分面積相等。圓的面積占外接正方形面積的78.5%。29、時(shí)鐘問(wèn)題快慢:基本思路:1、按照行程問(wèn)題中的思維方法解題;2、不同的表當(dāng)成速度不同的運(yùn)動(dòng)物體;3、路程的單位是分格(表一周為60分格);4、時(shí)間是標(biāo)準(zhǔn)表所經(jīng)過(guò)的時(shí)間;5、合理利用行程問(wèn)題中的比例關(guān)系;30、時(shí)鐘問(wèn)題鐘面追及:基本思路:封閉曲線上的追及問(wèn)題。關(guān)鍵問(wèn)題:確定分針與時(shí)針的初始位置;確定分針與時(shí)針的路程差;基本方法:分格方法:時(shí)鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時(shí)走60分格,即一周;而時(shí)針只走5分格,故分針每分鐘走1分格,時(shí)針每分鐘走112分格。度數(shù)方

30、法:從角度觀點(diǎn)看,鐘面圓周一周是360,分針每分鐘轉(zhuǎn) 360/60度,即6,時(shí)針每分鐘轉(zhuǎn)360/12X60度,即1/2度。31、濃度與配比:經(jīng)驗(yàn)總結(jié):在配比的過(guò)程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。基本公式:溶液重量=溶質(zhì)重量+溶劑重量;溶質(zhì)重量=溶液重量濃度;濃度= 溶質(zhì)/溶液100%=溶質(zhì)/(溶劑+溶質(zhì))100%經(jīng)驗(yàn)總結(jié):在配比的過(guò)程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他

31、們濃度的變化成反比。32、經(jīng)濟(jì)問(wèn)題:利潤(rùn)的百分?jǐn)?shù)=(賣(mài)價(jià)-成本)成本100%;賣(mài)價(jià)=成本(1+利潤(rùn)的百分?jǐn)?shù));成本=賣(mài)價(jià)(1+利潤(rùn)的百分?jǐn)?shù));商品的定價(jià)按照期望的利潤(rùn)來(lái)確定;定價(jià)=成本(1+期望利潤(rùn)的百分?jǐn)?shù));本金:儲(chǔ)蓄的金額;利率:利息和本金的比;利息=本金利率期數(shù);含稅價(jià)格=不含稅價(jià)格(1+增值稅稅率);33、不定方程:一次不定方程:含有兩個(gè)未知數(shù)的一個(gè)方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常規(guī)方法:觀察法、試驗(yàn)法、枚舉法;多元不定方程:含有三個(gè)未知數(shù)的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根據(jù)已知條件確定一個(gè)未知數(shù)的值,或者消去一個(gè)未知數(shù),

32、這樣就把三元一次方程變成二元一次不定方程,按照二元一次不定方程解即可;涉及知識(shí)點(diǎn):列方程、數(shù)的整除、大小比較;解不定方程的步驟:1、列方程;2、消元;3、寫(xiě)出表達(dá)式;4、確定范圍;5、確定特征;6、確定答案;技巧總結(jié):A、寫(xiě)出表達(dá)式的技巧:用特征不明顯的未知數(shù)表示特征明顯的未知數(shù),同時(shí)考慮用范圍小的未知數(shù)表示范圍大的未知數(shù);B、消元技巧:消掉范圍大的未知數(shù);34、循環(huán)小數(shù):把循環(huán)小數(shù)的小數(shù)部分化成分?jǐn)?shù)的規(guī)則:純循環(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):將一個(gè)循環(huán)節(jié)的數(shù)字組成的數(shù)作為分子,分母的各位都是9,9的個(gè)數(shù)與循環(huán)節(jié)的位數(shù)相同,最后能約分的再約分?;煅h(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):分子是第二個(gè)循環(huán)節(jié)以前的小數(shù)部

33、分的數(shù)字組成的數(shù)與不循環(huán)部分的數(shù)字所組成的數(shù)之差,分母的頭幾位數(shù)字是9,9的個(gè)數(shù)與一個(gè)循環(huán)節(jié)的位數(shù)相同,末幾位是0,0的個(gè)數(shù)與不循環(huán)部分的位數(shù)相同。分?jǐn)?shù)轉(zhuǎn)化成循環(huán)小數(shù)的判斷方法:一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中既含有質(zhì)因數(shù)2和5,又含有2和5以外的質(zhì)因數(shù),那么這個(gè)分?jǐn)?shù)化成的小數(shù)必定是混循環(huán)小數(shù)。一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中只含有2和5以外的質(zhì)因數(shù),那么這個(gè)分?jǐn)?shù)化成的小數(shù)必定是純循環(huán)小數(shù)。小學(xué)奧數(shù)應(yīng)用題30道典型題型(完整版)附含義+解題思路+方法+舉例1、歸一問(wèn)題2、歸總問(wèn)題3、和差問(wèn)題4、和倍問(wèn)題5、差倍問(wèn)題6、倍比問(wèn)題7、相遇問(wèn)題8、追及問(wèn)題9、植樹(shù)問(wèn)題10、年齡問(wèn)題11、行船問(wèn)題12、列車(chē)問(wèn)題13、

34、時(shí)鐘問(wèn)題14、盈虧問(wèn)題15、工程問(wèn)題16、正反比例問(wèn)題17、按比例分配18、百分?jǐn)?shù)問(wèn)題19、“牛吃草”問(wèn)題20、雞兔同籠問(wèn)題21、方陣問(wèn)題22、商品利潤(rùn)問(wèn)題23、存款利率問(wèn)題24、溶液濃度問(wèn)題25、構(gòu)圖布數(shù)問(wèn)題26、幻方問(wèn)題27、抽屜原則問(wèn)題28、公約公倍問(wèn)題29、最值問(wèn)題30、列方程問(wèn)題一、歸一問(wèn)題【含義】 在解題時(shí),先求出一份是多少(即單一量),然后以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。這類(lèi)應(yīng)用題叫做歸一問(wèn)題。【數(shù)量關(guān)系】 總量份數(shù)1份數(shù)量1份數(shù)量所占份數(shù)所求幾份的數(shù)量另一總量(總量份數(shù))所求份數(shù)【解題思路和方法】 先求出單一量,以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。例1 買(mǎi)5支鉛筆要0.6元錢(qián),

35、買(mǎi)同樣的鉛筆16支,需要多少錢(qián)?解(1)買(mǎi)1支鉛筆多少錢(qián)? 0.650.12(元)(2)買(mǎi)16支鉛筆需要多少錢(qián)?0.12161.92(元)列成綜合算式 0.65160.12161.92(元)答:需要1.92元。例2 3臺(tái)拖拉機(jī)3天耕地90公頃,照這樣計(jì)算,5臺(tái)拖拉機(jī)6 天耕地多少公頃?解(1)1臺(tái)拖拉機(jī)1天耕地多少公頃? 903310(公頃)(2)5臺(tái)拖拉機(jī)6天耕地多少公頃? 1056300(公頃)列成綜合算式 9033561030300(公頃)答:5臺(tái)拖拉機(jī)6 天耕地300公頃。例3 5輛汽車(chē)4次可以運(yùn)送100噸鋼材,如果用同樣的7輛汽車(chē)運(yùn)送105噸鋼材,需要運(yùn)幾次?解 (1)1輛汽車(chē)1次能

36、運(yùn)多少噸鋼材? 100545(噸)(2)7輛汽車(chē)1次能運(yùn)多少噸鋼材? 5735(噸)(3)105噸鋼材7輛汽車(chē)需要運(yùn)幾次? 105353(次)列成綜合算式 105(100547)3(次)答:需要運(yùn)3次。歸總問(wèn)題【含義】 解題時(shí),常常先找出“總數(shù)量”,然后再根據(jù)其它條件算出所求的問(wèn)題,叫歸總問(wèn)題。所謂“總數(shù)量”是指貨物的總價(jià)、幾小時(shí)(幾天)的總工作量、幾公畝地上的總產(chǎn)量、幾小時(shí)行的總路程等。【數(shù)量關(guān)系】 1份數(shù)量份數(shù)總量總量1份數(shù)量份數(shù)總量另一份數(shù)另一每份數(shù)量【解題思路和方法】 先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。例1 服裝廠原來(lái)做一套衣服用布3.2米,改進(jìn)裁剪方法后,每套衣服用布2.8米。

37、原來(lái)做791套衣服的布,現(xiàn)在可以做多少套?解 (1)這批布總共有多少米? 3.27912531.2(米)(2)現(xiàn)在可以做多少套? 2531.22.8904(套)列成綜合算式 3.27912.8904(套)答:現(xiàn)在可以做904套。例2 小華每天讀24頁(yè)書(shū),12天讀完了紅巖一書(shū)。小明每天讀36頁(yè)書(shū),幾天可以讀完紅巖?解 (1)紅巖這本書(shū)總共多少頁(yè)? 2412288(頁(yè))(2)小明幾天可以讀完紅巖? 288368(天)列成綜合算式 2412368(天)答:小明8天可以讀完紅巖。例3 食堂運(yùn)來(lái)一批蔬菜,原計(jì)劃每天吃50千克,30天慢慢消費(fèi)完這批蔬菜。后來(lái)根據(jù)大家的意見(jiàn),每天比原計(jì)劃多吃10千克,這批蔬

38、菜可以吃多少天?解 (1)這批蔬菜共有多少千克? 50301500(千克)(2)這批蔬菜可以吃多少天? 1500(5010)25(天)列成綜合算式 5030(5010)15006025(天)答:這批蔬菜可以吃25天。三、和差問(wèn)題【含義】 已知兩個(gè)數(shù)量的和與差,求這兩個(gè)數(shù)量各是多少,這類(lèi)應(yīng)用題叫和差問(wèn)題?!緮?shù)量關(guān)系】 大數(shù)(和差) 2小數(shù)(和差) 2【解題思路和方法】 簡(jiǎn)單的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。例1 甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?解 甲班人數(shù)(986)252(人)乙班人數(shù)(986)246(人)答:甲班有52人,乙班有46人。例2 長(zhǎng)方形的

39、長(zhǎng)和寬之和為18厘米,長(zhǎng)比寬多2厘米,求長(zhǎng)方形的面積。解 長(zhǎng)(182)210(厘米)寬(182)28(厘米)長(zhǎng)方形的面積 10880(平方厘米)答:長(zhǎng)方形的面積為80平方厘米。例3 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。解 甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(3230)2千克,且甲是大數(shù),丙是小數(shù)。由此可知甲袋化肥重量(222)212(千克)丙袋化肥重量(222)210(千克)乙袋化肥重量321220(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4 甲乙兩車(chē)原來(lái)共裝蘋(píng)果97筐,從甲車(chē)

40、取下14筐放到乙車(chē)上,結(jié)果甲車(chē)比乙車(chē)還多3筐,兩車(chē)原來(lái)各裝蘋(píng)果多少筐?解 “從甲車(chē)取下14筐放到乙車(chē)上,結(jié)果甲車(chē)比乙車(chē)還多3筐”,這說(shuō)明甲車(chē)是大數(shù),乙車(chē)是小數(shù),甲與乙的差是(1423),甲與乙的和是97,因此甲車(chē)筐數(shù)(971423)264(筐)乙車(chē)筐數(shù)976433(筐)答:甲車(chē)原來(lái)裝蘋(píng)果64筐,乙車(chē)原來(lái)裝蘋(píng)果33筐。四、和倍問(wèn)題【含義】 已知兩個(gè)數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類(lèi)應(yīng)用題叫做和倍問(wèn)題?!緮?shù)量關(guān)系】 總和 (幾倍1)較小的數(shù)總和 較小的數(shù) 較大的數(shù)較小的數(shù) 幾倍 較大的數(shù)【解題思路和方法】 簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式

41、。例1 果園里有杏樹(shù)和桃樹(shù)共248棵,桃樹(shù)的棵數(shù)是杏樹(shù)的3倍,求杏樹(shù)、桃樹(shù)各多少棵?解 (1)杏樹(shù)有多少棵? 248(31)62(棵)(2)桃樹(shù)有多少棵? 623186(棵)答:杏樹(shù)有62棵,桃樹(shù)有186棵。例2 東西兩個(gè)倉(cāng)庫(kù)共存糧480噸,東庫(kù)存糧數(shù)是西庫(kù)存糧數(shù)的1.4倍,求兩庫(kù)各存糧多少噸?解 (1)西庫(kù)存糧數(shù)480(1.41)200(噸)(2)東庫(kù)存糧數(shù)480200280(噸)答:東庫(kù)存糧280噸,西庫(kù)存糧200噸。例3 甲站原有車(chē)52輛,乙站原有車(chē)32輛,若每天從甲站開(kāi)往乙站28輛,從乙站開(kāi)往甲站24輛,幾天后乙站車(chē)輛數(shù)是甲站的2倍?解 每天從甲站開(kāi)往乙站28輛,從乙站開(kāi)往甲站24輛,

42、相當(dāng)于每天從甲站開(kāi)往乙站(2824)輛。把幾天以后甲站的車(chē)輛數(shù)當(dāng)作1倍量,這時(shí)乙站的車(chē)輛數(shù)就是2倍量,兩站的車(chē)輛總數(shù)(5232)就相當(dāng)于(21)倍,那么,幾天以后甲站的車(chē)輛數(shù)減少為(5232)(21)28(輛)所求天數(shù)為 (5228)(2824)6(天)答:6天以后乙站車(chē)輛數(shù)是甲站的2倍。例4 甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?解 乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。因?yàn)橐冶燃椎?倍少4,所以給乙加上4,乙數(shù)就變成甲數(shù)的2倍;又因?yàn)楸燃椎?倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;這時(shí)(17046)就相當(dāng)于(123)倍。那么,甲數(shù)(170

43、46)(123)28乙數(shù)282452丙數(shù)283690答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。五、差倍問(wèn)題【含義】 已知兩個(gè)數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類(lèi)應(yīng)用題叫做差倍問(wèn)題?!緮?shù)量關(guān)系】 兩個(gè)數(shù)的差(幾倍1)較小的數(shù)較小的數(shù)幾倍較大的數(shù)【解題思路和方法】 簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。例1 果園里桃樹(shù)的棵數(shù)是杏樹(shù)的3倍,而且桃樹(shù)比杏樹(shù)多124棵。求杏樹(shù)、桃樹(shù)各多少棵?解 (1)杏樹(shù)有多少棵? 124(31)62(棵)(2)桃樹(shù)有多少棵? 623186(棵)答:果園里杏樹(shù)是62棵,桃樹(shù)是186棵。例2 爸爸比兒子大27歲,今年,爸

44、爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?解 (1)兒子年齡27(41)9(歲)(2)爸爸年齡9436(歲)答:父子二人今年的年齡分別是36歲和9歲。例3 商場(chǎng)改革經(jīng)營(yíng)管理辦法后,本月盈利比上月盈利的2倍還多12萬(wàn)元,又知本月盈利比上月盈利多30萬(wàn)元,求這兩個(gè)月盈利各是多少萬(wàn)元?解 如果把上月盈利作為1倍量,則(3012)萬(wàn)元就相當(dāng)于上月盈利的(21)倍,因此上月盈利(3012)(21)18(萬(wàn)元)本月盈利183048(萬(wàn)元)答:上月盈利是18萬(wàn)元,本月盈利是48萬(wàn)元。例4 糧庫(kù)有94噸小麥和138噸玉米,如果每天運(yùn)出小麥和玉米各是9噸,問(wèn)幾天后剩下的玉米是小麥的3倍?解 由于每天運(yùn)

45、出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于原來(lái)的數(shù)量差(13894)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(13894)就相當(dāng)于(31)倍,因此剩下的小麥數(shù)量(13894)(31)22(噸)運(yùn)出的小麥數(shù)量942272(噸)運(yùn)糧的天數(shù)7298(天)答:8天以后剩下的玉米是小麥的3倍。六、倍比問(wèn)題【含義】 有兩個(gè)已知的同類(lèi)量,其中一個(gè)量是另一個(gè)量的若干倍,解題時(shí)先求出這個(gè)倍數(shù),再用倍比的方法算出要求的數(shù),這類(lèi)應(yīng)用題叫做倍比問(wèn)題?!緮?shù)量關(guān)系】 總量一個(gè)數(shù)量倍數(shù)另一個(gè)數(shù)量倍數(shù)另一總量【解題思路和方法】 先求出倍數(shù),再用倍比關(guān)系求出要求的數(shù)。例1 100千克油菜籽可以榨

46、油40千克,現(xiàn)在有油菜籽3700千克,可以榨油多少?解 (1)3700千克是100千克的多少倍? 370010037(倍)(2)可以榨油多少千克? 40371480(千克)列成綜合算式 40(3700100)1480(千克)答:可以榨油1480千克。例2 今年植樹(shù)節(jié)這天,某小學(xué)300名師生共植樹(shù)400棵,照這樣計(jì)算,全縣48000名師生共植樹(shù)多少棵?解 (1)48000名是300名的多少倍? 48000300160(倍)(2)共植樹(shù)多少棵? 40016064000(棵)列成綜合算式 400(48000300)64000(棵)答:全縣48000名師生共植樹(shù)64000棵。例3 鳳翔縣今年蘋(píng)果大豐收

47、,田家莊一戶人家4畝果園收入11111元,照這樣計(jì)算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?解 (1)800畝是4畝的幾倍? 8004200(倍)(2)800畝收入多少元? 111112002222200(元)(3)16000畝是800畝的幾倍? 1600080020(倍)(4)16000畝收入多少元? 22222002044444000(元)答:全鄉(xiāng)800畝果園共收入2222200元,全縣16000畝果園共收入44444000元。七、相遇問(wèn)題【含義】 兩個(gè)運(yùn)動(dòng)的物體同時(shí)由兩地出發(fā)相向而行,在途中相遇。這類(lèi)應(yīng)用題叫做相遇問(wèn)題?!緮?shù)量關(guān)系】 相遇時(shí)間總路程(甲速乙速)總

48、路程(甲速乙速)相遇時(shí)間【解題思路和方法】 簡(jiǎn)單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。例1 南京到上海的水路長(zhǎng)392千米,同時(shí)從兩港各開(kāi)出一艘輪船相對(duì)而行,從南京開(kāi)出的船每小時(shí)行28千米,從上海開(kāi)出的船每小時(shí)行21千米,經(jīng)過(guò)幾小時(shí)兩船相遇?解 392(2821)8(小時(shí))答:經(jīng)過(guò)8小時(shí)兩船相遇。例2 小李和小劉在周長(zhǎng)為400米的環(huán)形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點(diǎn)同時(shí)出發(fā),反向而跑,那么,二人從出發(fā)到第二次相遇需多長(zhǎng)時(shí)間?解 “第二次相遇”可以理解為二人跑了兩圈。因此總路程為4002相遇時(shí)間(4002)(53)100(秒)答:二人從出發(fā)到第二次相遇需1

49、00秒時(shí)間。例3 甲乙二人同時(shí)從兩地騎自行車(chē)相向而行,甲每小時(shí)行15千米,乙每小時(shí)行13千米,兩人在距中點(diǎn)3千米處相遇,求兩地的距離。解 “兩人在距中點(diǎn)3千米處相遇”是正確理解本題題意的關(guān)鍵。從題中可知甲騎得快,乙騎得慢,甲過(guò)了中點(diǎn)3千米,乙距中點(diǎn)3千米,就是說(shuō)甲比乙多走的路程是(32)千米,因此,相遇時(shí)間(32)(1513)3(小時(shí))兩地距離(1513)384(千米)答:兩地距離是84千米。八、追及問(wèn)題【含義】 兩個(gè)運(yùn)動(dòng)物體在不同地點(diǎn)同時(shí)出發(fā)(或者在同一地點(diǎn)而不是同時(shí)出發(fā),或者在不同地點(diǎn)又不是同時(shí)出發(fā))作同向運(yùn)動(dòng),在后面的,行進(jìn)速度要快些,在前面的,行進(jìn)速度較慢些,在一定時(shí)間之內(nèi),后面的追上

50、前面的物體。這類(lèi)應(yīng)用題就叫做追及問(wèn)題?!緮?shù)量關(guān)系】 追及時(shí)間追及路程(快速慢速)追及路程(快速慢速)追及時(shí)間【解題思路和方法】 簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。例1 好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?解 (1)劣馬先走12天能走多少千米? 7512900(千米)(2)好馬幾天追上劣馬? 900(12075)20(天)列成綜合算式 7512(12075)9004520(天)答:好馬20天能追上劣馬。例2 小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點(diǎn)同時(shí)出發(fā),同向而跑。小明第一次追上小亮?xí)r跑了500米,求小亮的

51、速度是每秒多少米。解 小明第一次追上小亮?xí)r比小亮多跑一圈,即200米,此時(shí)小亮跑了(500200)米,要知小亮的速度,須知追及時(shí)間,即小明跑500米所用的時(shí)間。又知小明跑200米用40秒,則跑500米用40(500200)秒,所以小亮的速度是(500200)40(500200)3001003(米)答:小亮的速度是每秒3米。例3 我人民解放軍追擊一股逃竄的敵人,敵人在下午16點(diǎn)開(kāi)始從甲地以每小時(shí)10千米的速度逃跑,解放軍在晚上22點(diǎn)接到命令,以每小時(shí)30千米的速度開(kāi)始從乙地追擊。已知甲乙兩地相距60千米,問(wèn)解放軍幾個(gè)小時(shí)可以追上敵人?解 敵人逃跑時(shí)間與解放軍追擊時(shí)間的時(shí)差是(2216)小時(shí),這段

52、時(shí)間敵人逃跑的路程是10(226)千米,甲乙兩地相距60千米。由此推知追及時(shí)間10(226)60(3010)2202011(小時(shí))答:解放軍在11小時(shí)后可以追上敵人。例4 一輛客車(chē)從甲站開(kāi)往乙站,每小時(shí)行48千米;一輛貨車(chē)同時(shí)從乙站開(kāi)往甲站,每小時(shí)行40千米,兩車(chē)在距兩站中點(diǎn)16千米處相遇,求甲乙兩站的距離。解 這道題可以由相遇問(wèn)題轉(zhuǎn)化為追及問(wèn)題來(lái)解決。從題中可知客車(chē)落后于貨車(chē)(162)千米,客車(chē)追上貨車(chē)的時(shí)間就是前面所說(shuō)的相遇時(shí)間,這個(gè)時(shí)間為 162(4840)4(小時(shí))所以兩站間的距離為 (4840)4352(千米)列成綜合算式 (4840)162(4840)884352(千米)答:甲乙兩

53、站的距離是352千米。例5 兄妹二人同時(shí)由家上學(xué),哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門(mén)口時(shí)發(fā)現(xiàn)忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問(wèn)他們家離學(xué)校有多遠(yuǎn)?解 要求距離,速度已知,所以關(guān)鍵是求出相遇時(shí)間。從題中可知,在相同時(shí)間(從出發(fā)到相遇)內(nèi)哥哥比妹妹多走(1802)米,這是因?yàn)楦绺绫让妹妹糠昼姸嘧撸?060)米,那么,二人從家出走到相遇所用時(shí)間為1802(9060)12(分鐘)家離學(xué)校的距離為 9012180900(米)答:家離學(xué)校有900米遠(yuǎn)。例6 孫亮打算上課前5分鐘到學(xué)校,他以每小時(shí)4千米的速度從家步行去學(xué)校,當(dāng)他走了1千米時(shí),發(fā)現(xiàn)手表慢了10分鐘

54、,因此立即跑步前進(jìn),到學(xué)校恰好準(zhǔn)時(shí)上課。后來(lái)算了一下,如果孫亮從家一開(kāi)始就跑步,可比原來(lái)步行早9分鐘到學(xué)校。求孫亮跑步的速度。解 手表慢了10分鐘,就等于晚出發(fā)10分鐘,如果按原速走下去,就要遲到(105)分鐘,后段路程跑步恰準(zhǔn)時(shí)到學(xué)校,說(shuō)明后段路程跑比走少用了(105)分鐘。如果從家一開(kāi)始就跑步,可比步行少9分鐘,由此可知,行1千米,跑步比步行少用9(105)分鐘。所以步行1千米所用時(shí)間為 19(105)0.25(小時(shí))15(分鐘)跑步1千米所用時(shí)間為 159(105)11(分鐘)跑步速度為每小時(shí) 111605.5(千米)答:孫亮跑步速度為每小時(shí) 5.5千米。九、植樹(shù)問(wèn)題【含義】 按相等的距

55、離植樹(shù),在距離、棵距、棵數(shù)這三個(gè)量之間,已知其中的兩個(gè)量,要求第三個(gè)量,這類(lèi)應(yīng)用題叫做植樹(shù)問(wèn)題?!緮?shù)量關(guān)系】 線形植樹(shù) 棵數(shù)距離棵距1環(huán)形植樹(shù) 棵數(shù)距離棵距方形植樹(shù) 棵數(shù)距離棵距4三角形植樹(shù) 棵數(shù)距離棵距3面積植樹(shù) 棵數(shù)面積(棵距行距)【解題思路和方法】 先弄清楚植樹(shù)問(wèn)題的類(lèi)型,然后可以利用公式。例1 一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?解 1362168169(棵)答:一共要栽69棵垂柳。例2 一個(gè)圓形池塘周長(zhǎng)為400米,在岸邊每隔4米栽一棵白楊樹(shù),一共能栽多少棵白楊樹(shù)?解 4004100(棵)答:一共能栽100棵白楊樹(shù)。例3 一個(gè)正方形的運(yùn)動(dòng)場(chǎng),每邊長(zhǎng)220

56、米,每隔8米安裝一個(gè)照明燈,一共可以安裝多少個(gè)照明燈?解 2204841104106(個(gè))答:一共可以安裝106個(gè)照明燈。例4 給一個(gè)面積為96平方米的住宅鋪設(shè)地板磚,所用地板磚的長(zhǎng)和寬分別是60厘米和40厘米,問(wèn)至少需要多少塊地板磚?解 96(0.60.4)960.24400(塊)答:至少需要400塊地板磚。例5 一座大橋長(zhǎng)500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個(gè)電桿,每個(gè)電桿上安裝2盞路燈,一共可以安裝多少盞路燈?解 (1)橋的一邊有多少個(gè)電桿? 50050111(個(gè))(2)橋的兩邊有多少個(gè)電桿? 11222(個(gè))(3)大橋兩邊可安裝多少盞路燈?22244(盞)答:大橋兩邊一

57、共可以安裝44盞路燈。十、年齡問(wèn)題【含義】 這類(lèi)問(wèn)題是根據(jù)題目的內(nèi)容而得名,它的主要特點(diǎn)是兩人的年齡差不變,但是,兩人年齡之間的倍數(shù)關(guān)系隨著年齡的增長(zhǎng)在發(fā)生變化?!緮?shù)量關(guān)系】年齡問(wèn)題往往與和差、和倍、差倍問(wèn)題有著密切聯(lián)系,尤其與差倍問(wèn)題的解題思路是一致的,要緊緊抓住“年齡差不變”這個(gè)特點(diǎn)?!窘忸}思路和方法】 可以利用“差倍問(wèn)題”的解題思路和方法。例1 爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?解 3557(倍)(35+1)(5+1)6(倍)答:今年爸爸的年齡是亮亮的7倍,明年爸爸的年齡是亮亮的6倍。例2 母親今年37歲,女兒今年7歲,幾年后母親的年齡是女兒的4倍?解 (

58、1)母親比女兒的年齡大多少歲? 37730(歲)(2)幾年后母親的年齡是女兒的4倍?30(41)73(年)列成綜合算式 (377)(41)73(年)答:3年后母親的年齡是女兒的4倍。例3 3年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?解 今年父子的年齡和應(yīng)該比3年前增加(32)歲,今年二人的年齡和為 493255(歲)把今年兒子年齡作為1倍量,則今年父子年齡和相當(dāng)于(41)倍,因此,今年兒子年齡為 55(41)11(歲)今年父親年齡為 11444(歲)答:今年父親年齡是44歲,兒子年齡是11歲。例4 甲對(duì)乙說(shuō):“當(dāng)我的歲數(shù)曾經(jīng)是你現(xiàn)在的歲數(shù)時(shí),你才4歲”。乙對(duì)甲

59、說(shuō):“當(dāng)我的歲數(shù)將來(lái)是你現(xiàn)在的歲數(shù)時(shí),你將61歲”。求甲乙現(xiàn)在的歲數(shù)各是多少?解這里涉及到三個(gè)年份:過(guò)去某一年、今年、將來(lái)某一年。列表分析:過(guò)去某一年今 年將來(lái)某一年甲歲歲61歲乙4歲歲歲表中兩個(gè)“”表示同一個(gè)數(shù),兩個(gè)“”表示同一個(gè)數(shù)。因?yàn)閮蓚€(gè)人的年齡差總相等:461,也就是4,61成等差數(shù)列,所以,61應(yīng)該比4大3個(gè)年齡差,因此二人年齡差為 (614)319(歲)甲今年的歲數(shù)為 611942(歲)乙今年的歲數(shù)為 421923(歲)答:甲今年的歲數(shù)是42歲,乙今年的歲數(shù)是23歲。十一、行船問(wèn)題【含義】 行船問(wèn)題也就是與航行有關(guān)的問(wèn)題。解答這類(lèi)問(wèn)題要弄清船速與水速,船速是船只本身航行的速度,也就

60、是船只在靜水中航行的速度;水速是水流的速度,船只順?biāo)叫械乃俣仁谴倥c水速之和;船只逆水航行的速度是船速與水速之差?!緮?shù)量關(guān)系】 (順?biāo)俣饶嫠俣龋?船速(順?biāo)俣饶嫠俣龋?水速順?biāo)俅?逆水速逆水速水速2逆水速船速2順?biāo)夙標(biāo)偎?【解題思路和方法】 大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。例1 一只船順?biāo)?20千米需用8小時(shí),水流速度為每小時(shí)15千米,這只船逆水行這段路程需用幾小時(shí)?解 由條件知,順?biāo)俅偎?208,而水速為每小時(shí)15千米,所以,船速為每小時(shí) 32081525(千米)船的逆水速為 251510(千米)船逆水行這段路程的時(shí)間為 3201032(小時(shí))答:這只船逆水

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論