2023學年海南省三亞華僑校中考數(shù)學最后一模試卷含答案解析_第1頁
2023學年海南省三亞華僑校中考數(shù)學最后一模試卷含答案解析_第2頁
2023學年海南省三亞華僑校中考數(shù)學最后一模試卷含答案解析_第3頁
2023學年海南省三亞華僑校中考數(shù)學最后一模試卷含答案解析_第4頁
2023學年海南省三亞華僑校中考數(shù)學最后一模試卷含答案解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2023年海南省三亞華僑校中考數(shù)學最后一模試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、測試卷卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是( )ABCD2在中,則的值是( )ABCD3已知m,n,則代數(shù)式的值為 ()

2、A3B3C5D94二次函數(shù)y=(x+2)21的圖象的對稱軸是()A直線x=1B直線x=1C直線x=2D直線x=25如圖,函數(shù)ykxb(k0)與y (m0)的圖象交于點A(2,3),B(6,1),則不等式kxb的解集為()ABCD6關于的方程有實數(shù)根,則整數(shù)的最大值是( )A6B7C8D97已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是()Ak8Bk8Ck8Dk88下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是( ) A B C D9下列運算正確的是()Aa6a2=a3 B(2a+b)(2ab)=4a2b2 C(a)2a3=a6 D5a+2b=7ab10一只不透明的袋子中裝有2個

3、白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()ABCD二、填空題(本大題共6個小題,每小題3分,共18分)11如圖,D,E分別是ABC的邊AB、BC上的點,且DEAC,AE、CD相交于點O,若SDOE:SCOA=1:16,則SBDE與SCDE的比是_12如圖,在平面直角坐標系中,已知A(2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90得到線段BA,則A的坐標為_13計算:a3(a)2=_14有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是_1

4、5如圖,將周長為8的ABC沿BC方向向右平移1個單位得到DEF,則四邊形ABFD的周長為 16如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標原點,tanAOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若COD的面積為20,則k的值等于_.三、解答題(共8題,共72分)17(8分)為了貫徹落實市委政府提出的“精準扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:車型 目的地A村(元/輛)B村(元/

5、輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數(shù)解析式(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用18(8分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B和折痕OP設BP=t()如圖,當BOP=300時,求點P的坐標;()如圖,經(jīng)過點P再次折疊紙片,使點C落

6、在直線PB上,得點C和折痕PQ,若AQ=m,試用含有t的式子表示m;()在()的條件下,當點C恰好落在邊OA上時,求點P的坐標(直接寫出結果即可)19(8分)計算:|2|+()12cos4520(8分)如圖,反比例函數(shù)y=(x0)的圖象與一次函數(shù)y=2x的圖象相交于點A,其橫坐標為1(1)求k的值;(1)點B為此反比例函數(shù)圖象上一點,其縱坐標為2過點B作CBOA,交x軸于點C,求點C的坐標21(8分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生20162017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖

7、請根據(jù)圖中提供的信息,回答下列問題:(1)a= %,并補全條形圖(2)在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?(3)如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?22(10分)如圖,在平面直角坐標系中,二次函數(shù)yx2+bx+c的圖象與坐標軸交于A,B,C三點,其中點B的坐標為(1,0),點C的坐標為(0,4);點D的坐標為(0,2),點P為二次函數(shù)圖象上的動點(1)求二次函數(shù)的表達式;(2)當點P位于第二象限內(nèi)二次函數(shù)的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點

8、F,使PDF與ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由23(12分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設OAC=,請用表示AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長24如圖,已知是的直徑,點、在上,且,過點作,垂足為求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、B【答案解析

9、】解:根據(jù)題意可得:反比例函數(shù)處于二、四象限,則在每個象限內(nèi)為增函數(shù),且當x0時y0,當x0時,y0,.2、D【答案解析】首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解【題目詳解】C=90,BC=1,AB=4,故選:D【答案點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比3、B【答案解析】由已知可得:,=.【題目詳解】由已知可得:,原式=故選:B【答案點睛】考核知識點:二次根式運算.配方是關鍵.4、D【答案解析】根據(jù)二次函數(shù)頂點式的性質(zhì)解答即可.【題目詳解】y=(x+2)21是頂點式,對稱軸是:x=-2,故選D.【答案點

10、睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質(zhì),對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質(zhì)是解題關鍵.5、B【答案解析】根據(jù)函數(shù)的圖象和交點坐標即可求得結果【題目詳解】解:不等式kx+b 的解集為:-6x0或x2,故選B【答案點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵是注意掌握數(shù)形結合思想的應用6、C【答案解析】方程有實數(shù)根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數(shù)根,則0,求出a的取值范圍,取最大整數(shù)即可【題目詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x

11、=;當a-60,即a6時,=(-1)2-4(a-6)6=201-24a0,解上式,得1.6,取最大整數(shù),即a=1故選C7、A【答案解析】本題考查反比例函數(shù)的圖象和性質(zhì),由k-80即可解得答案【題目詳解】反比例函數(shù)y=的圖象位于第一、第三象限,k-80,解得k8,故選A【答案點睛】本題考查了反比例函數(shù)的圖象和性質(zhì):、當k0時,圖象分別位于第一、三象限;當k0時,圖象分別位于第二、四象限、當k0時,在同一個象限內(nèi),y隨x的增大而減??;當k0時,在同一個象限,y隨x的增大而增大8、B【答案解析】測試卷解析:A. 是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但

12、不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.9、B【答案解析】A選項:利用同底數(shù)冪的除法法則,底數(shù)不變,只把指數(shù)相減即可;B選項:利用平方差公式,應先把2a看成一個整體,應等于(2a)2-b2而不是2a2-b2,故本選項錯誤;C選項:先把(-a)2化為a2,然后利用同底數(shù)冪的乘法法則,底數(shù)不變,只把指數(shù)相加,即可得到;D選項:兩項不是同類項,故不能進行合并【題目詳解】A選項:a6a2=a4,故本選項錯誤;B選項:(2a+b)(2a-b)=4a2-b2,故本選項正確;C選項:(-a)2a3=a5,故本選項錯誤;D選項:5a與2b不是同類項,不能合并,故本選項錯誤;故選:B【答案點睛

13、】考查學生同底數(shù)冪的乘除法法則的運用以及對平方差公式的掌握,同時要求學生對同類項進行正確的判斷10、B【答案解析】本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進行計算.【題目詳解】若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【答案點睛】掌握分類討論的方法是本題解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1:3【答案解析】根據(jù)相似三角形的判定,由DEAC,可知DOECOA,BDEBCA,然后根據(jù)相似三角

14、形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.12、 (2,3)【答案解析】作ACx軸于C,作ACx軸,垂足分別為C、C,證明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得結果【題目詳解】如圖,作ACx軸于C,作ACx軸,垂足分別為C、C,點A、B的坐標分別為(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90,ABC+ABC=90,BAC+ABC=90,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=

15、1+1=2,AC=BC=3,點A的坐標為(2,3)故答案為(2,3)【答案點睛】此題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),點的坐標的確定解決問題的關鍵是作輔助線構造全等三角形13、a【答案解析】利用整式的除法運算即可得出答案.【題目詳解】原式=a=a.【答案點睛】本題考查的知識點是整式的除法,解題關鍵是先將-a2變成a14、【答案解析】根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案【題目詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2

16、、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:【答案點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比15、1【答案解析】測試卷解析:根據(jù)題意,將周長為8的ABC沿邊BC向右平移1個單位得到DEF,則AD=1,BF=BC+CF=BC+1,DF=AC, 又AB+BC+AC=1, 四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1考點:平移的性質(zhì)16、24【答案解析】分析:如下圖,過點C作CFAO于點F,過點D作DEOA交CO于點E,設CF=4x,由tanAOC=可得OF=3x,由此可得O

17、C=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2SCOD=40=OACF=20 x2,從而可得x=,由此可得點C的坐標為,這樣由點C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點C作CFAO于點F,過點D作DEOA交CO于點E,設CF=4x,四邊形ABCO是菱形,ABCO,AOBC,DEAO,四邊形AOED和四邊形DECB都是平行四邊形,SAOD=SDOE,SBCD=SCDE,S菱形ABCD=2SDOE+2SCDE=2SCOD=40,tanAOC=,CF=4x,OF=3x,在RtCOF中,由勾股定理可得OC=5x,OA=OC=5x,S菱形ABCO=AOCF=5x4x=

18、20 x2=40,解得:x=,OF=,CF=,點C的坐標為,點C在反比例函數(shù)的圖象上,k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設CF=4x,結合已知條件把OF和OA用含x的式子表達出來;(2)由四邊形AOCB是菱形,點D在AB上,SCOD=20得到S菱形ABCO=2SCOD=40.三、解答題(共8題,共72分)17、(1)大貨車用8輛,小貨車用7輛;(2)y=100 x+1(3)見解析. 【答案解析】(1)設大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運輸152箱魚苗,列方程組求解;(2)設前往A村的大貨車為x輛,則前往B村的大貨車為(8-x

19、)輛,前往A村的小貨車為(10-x)輛,前往B村的小貨車為7-(10-x)輛,根據(jù)表格所給運費,求出y與x的函數(shù)關系式;(3)結合已知條件,求x的取值范圍,由(2)的函數(shù)關系式求使總運費最少的貨車調(diào)配方案【題目詳解】(1)設大貨車用x輛,小貨車用y輛,根據(jù)題意得:解得:大貨車用8輛,小貨車用7輛(2)y=800 x+900(8-x)+400(10-x)+6007-(10-x)=100 x+1(3x8,且x為整數(shù))(3)由題意得:12x+8(10-x)100,解得:x5,又3x8,5x8且為整數(shù),y=100 x+1,k=1000,y隨x的增大而增大,當x=5時,y最小,最小值為y=1005+1=

20、9900(元)答:使總運費最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村最少運費為9900元18、()點P的坐標為(,1)()(0t11)()點P的坐標為(,1)或(,1)【答案解析】()根據(jù)題意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分別是由OBP、QCP折疊得到的,可知OBPOBP,QCPQCP,易證得OBPPCQ,然后由相似三角形的對應邊成比例,即可求得答案()首先過點P作PEOA于E,易證得PCECQA,由勾股定理可求得CQ的長,然后利用相

21、似三角形的對應邊成比例與,即可求得t的值:【題目詳解】()根據(jù)題意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)點P的坐標為(,1)()OBP、QCP分別是由OBP、QCP折疊得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ由題意設BP=t,AQ=m,BC=11,AC=1,則PC=11t,CQ=1m(0t11)()點P的坐標為(,1)或(,1)

22、過點P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即將代入,并化簡,得解得:點P的坐標為(,1)或(,1)19、+1【答案解析】分析:直接利用二次根式的性質(zhì)、負指數(shù)冪的性質(zhì)和特殊角的三角函數(shù)值分別化簡求出答案詳解:原式=22+32 =2+1 =+1點睛:本題主要考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵20、(1)k=11;(1)C(2,0)【答案解析】測試卷分析:(1)首先求出點A的坐標為(1,6),把點A(1,6)代入y=即可求出k的值;(1)求出點B的坐標為B(4

23、,2),設直線BC的解析式為y=2x+b,把點B(4,2)代入求出b=-9,得出直線BC的解析式為y=2x-9,求出當y=0時,x=2即可測試卷解析:(1)點A在直線y=2x上,其橫坐標為1y=21=6,A(1,6), 把點A(1,6)代入,得,解得:k=11;(1)由(1)得:,點B為此反比例函數(shù)圖象上一點,其縱坐標為2,解得x=4,B(4,2),CBOA,設直線BC的解析式為y=2x+b,把點B(4,2)代入y=2x+b,得24+b=2,解得:b=9,直線BC的解析式為y=2x9,當y=0時,2x9=0,解得:x=2,C(2,0)21、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(

24、3)活動時間不少于1天的學生人數(shù)大約有5400人【答案解析】(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總?cè)藬?shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總?cè)藬?shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案【題目詳解】解:(1)扇形統(tǒng)計圖中a=15%40%20%25%=10%,該扇形所對圓心角的度數(shù)為31010%=31,參加社會實踐活動的天數(shù)為8天的人數(shù)是:10%=10(人),補圖如下:故答案為10;(2)抽樣調(diào)查中總?cè)藬?shù)為100人,結合

25、條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1(3)根據(jù)題意得:9000(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數(shù)大約有5400人【答案點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小22、 (1) yx23x+4;(2)當時,S有最大值;(3)點P的橫坐標為2或1或或.【答案解析】(1)將代入,列方程組求出b、c的值即可;(2)連接PD,作軸交于點G,求出直線的解析式為,設,則,當時,S有最大值;(3)過點P作軸,設,則,根據(jù)

26、,列出關于x的方程,解之即可【題目詳解】解:(1)將、代入, ,二次函數(shù)的表達式;(2)連接,作軸交于點,如圖所示在中,令y0,得,直線AD的解析式為設,則,當時,S有最大值(3)過點P作軸,設,則,即 ,當點P在y軸右側(cè)時,或,(舍去)或(舍去),當點P在y軸左側(cè)時,x0,或,(舍去),或(舍去), 綜上所述,存在點F,使與互余點P的橫坐標為或或或【答案點睛】本題是二次函數(shù),熟練掌握相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì)以及二次函數(shù)圖象的性質(zhì)等是解題的關鍵23、(1);(2);(3)【答案解析】(1)連接OB、OC,可證OBC是等邊三角形,根據(jù)垂徑定理可得DOC等于30,OA=OC可得ACO=CAO=,利用三角形的內(nèi)角和定理即可表示出AOD的值.(2)連接OB、OC,可證OBC是等邊三角形,根據(jù)垂徑定理可得DOB等于30,因為點D為BC的中點,則AOB=BOC=60,所以AOD等于90,根據(jù)OA=OB=2,在直角三角形中用三角函數(shù)及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內(nèi)切.先根據(jù)兩圓相切時圓心距與兩圓半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論