2022年福建省南平市某學(xué)校數(shù)學(xué)單招試卷(含答案)_第1頁
2022年福建省南平市某學(xué)校數(shù)學(xué)單招試卷(含答案)_第2頁
2022年福建省南平市某學(xué)校數(shù)學(xué)單招試卷(含答案)_第3頁
2022年福建省南平市某學(xué)校數(shù)學(xué)單招試卷(含答案)_第4頁
2022年福建省南平市某學(xué)校數(shù)學(xué)單招試卷(含答案)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年福建省南平市某學(xué)校數(shù)學(xué)單招試卷(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(10題)1.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},則A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}

2.設(shè)是l,m兩條不同直線,α,β是兩個不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m

B.若l//α,m⊥l,則m⊥α

C.若l//α,m//α,則l//m

D.若l⊥α,l///β則a⊥β

3.A.10B.5C.2D.12

4.“x=1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

5.下列函數(shù)中,在區(qū)間(0,)上是減函數(shù)的是()A.y=sinxB.y=cosxC.y=xD.y=lgx

6.用簡單隨機(jī)抽樣的方法從含有100個個體的總體中依次抽取一個容量為5的樣本,則個體m被抽到的概率為()A.1/100B.1/20C.1/99D.1/50

7.賄圓x2/7+y2/3=1的焦距為()A.4

B.2

C.2

D.2

8.已知logN10=,則N的值是()A.

B.

C.100

D.不確定

9.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()A.0B.-8C.2D.10

10.A.B.C.D.

二、填空題(10題)11.

12.在平面直角坐標(biāo)系xOy中,直線2x+ay-1=0和直線(2a-1)x-y+1=0互相垂直,則實數(shù)a的值是______________.

13.已知直線l1:ax-y+2a+1=0和直線l2:2x-(a-l)y+2=0(a∈R)則l1⊥l2的充要條件是a=______.

14.某機(jī)電班共有50名學(xué)生,任選一人是男生的概率為0.4,則這個班的男生共有

名。

15.某校有高中生1000人,其中高一年級400人,高二年級300人,高三年級300人,現(xiàn)釆取分層抽樣的方法抽取一個容量為40的樣本,則高三年級應(yīng)抽取的人數(shù)是_____人.

16.已知拋物線的頂點為原點,焦點在y軸上,拋物線上的點M(m,-2)到焦點的距離為4,則m的值為_____.

17.當(dāng)0<x<1時,x(1-x)取最大值時的值為________.

18.過點(1,-1),且與直線3x-2y+1=0垂直的直線方程為

19.

20.

三、計算題(5題)21.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

22.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

23.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

24.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.

25.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

四、證明題(5題)26.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

27.若x∈(0,1),求證:log3X3<log3X<X3.

28.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.

29.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2

+(y+1)2

=8.

30.己知sin(θ+α)=sin(θ+β),求證:

五、簡答題(5題)31.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

32.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.

33.已知橢圓和直線,求當(dāng)m取何值時,橢圓與直線分別相交、相切、相離。

34.解不等式組

35.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。

六、綜合題(5題)36.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

37.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

38.

39.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標(biāo)準(zhǔn)方程.

40.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.

參考答案

1.B集合的運算.由CuB={1,3,5}得B={2,4},故A∩B={2}.

2.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對于A:l與m可能異面,排除A;對于B;m與α可能平行或相交,排除B;對于C:l與m可能相交或異面,排除C

3.A

4.A充要條件的判斷.若x=1,則x2-1=0成立.x2-1=0,則x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要條件.

5.B,故在(0,π/2)是減函數(shù)。

6.B簡單隨機(jī)抽樣方法.總體含有100個個體,則每個個體被抽到的概率為1/100,所以以簡單隨機(jī)抽樣的方法從該總體中抽取一個容量為5的樣本,則指定的某個個體被抽到的概率為1/100×5=1/20.

7.A橢圓的定義.因為a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.

8.C由題可知:N1/2=10,所以N=100.

9.B直線之間位置關(guān)系的性質(zhì).由k=4-m/m+2=-2,得m=-8.

10.C

11.

12.2/3兩直線的位置關(guān)系.由題意得-2/a×(2a-1)=-1,解得a=2/3

13.1/3充要條件及直線的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3

14.20男生人數(shù)為0.4×50=20人

15.12,高三年級應(yīng)抽人數(shù)為300*40/1000=12。

16.±4,

17.1/2均值不等式求最值∵0<

18.

19.4.5

20.-5或3

21.

22.

23.

24.

25.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

26.證明:考慮對數(shù)函數(shù)y=lgx的限制知

:當(dāng)x∈(1,10)時,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B

27.

28.

∴PD//平面ACE.

29.

30.

31.由已知得:由上可解得

32.∵(1)這條弦與拋物線兩交點

33.∵∴當(dāng)△>0時,即,相交當(dāng)△=0時,即,相切當(dāng)△<0時,即,相離

34.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

35.

36.

37.

38.

39.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標(biāo)準(zhǔn)方程為

40.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論