2022年江蘇省南通市普通高校對(duì)口單招數(shù)學(xué)預(yù)測(cè)試題(含答案)_第1頁
2022年江蘇省南通市普通高校對(duì)口單招數(shù)學(xué)預(yù)測(cè)試題(含答案)_第2頁
2022年江蘇省南通市普通高校對(duì)口單招數(shù)學(xué)預(yù)測(cè)試題(含答案)_第3頁
2022年江蘇省南通市普通高校對(duì)口單招數(shù)學(xué)預(yù)測(cè)試題(含答案)_第4頁
2022年江蘇省南通市普通高校對(duì)口單招數(shù)學(xué)預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年江蘇省南通市普通高校對(duì)口單招數(shù)學(xué)預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(10題)1.橢圓x2/16+y2/9的焦點(diǎn)坐標(biāo)為()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

2.設(shè)集合={1,2,3,4,5,6,},M={1,3,5},則CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U

3.圓(x+1)2+y2=2的圓心到直線y=x+3的距離為()A.1

B.2

C.

D.

4.若函數(shù)f(x)=x2+ax+3在(-∞,1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)

5.已知函數(shù)f(x)=㏒2x,在區(qū)間[1,4]上隨機(jī)取一個(gè)數(shù)x,使得f(x)的值介于-1到1之間的概率為A.1/3B.3/4C.1/2D.2/3

6.設(shè)函數(shù)f(x)=x2+1,則f(x)是()

A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

7.已知橢圓x2/25+y2/m2=1(m<0)的右焦點(diǎn)為F1(4,0),則m=()A.-4B.-9C.-3D.-5

8.設(shè)集合A={1,3,5,7},B={x|2≤x≤5},則A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

9.設(shè)f(g(π))的值為()A.1B.0C.-1D.π

10.已知點(diǎn)A(-1,2),B(3,4),若,則向量a=()A.(-2,-1)B.(1,3)C.(4,2)D.(2,1)

二、填空題(5題)11.設(shè)x>0,則:y=3-2x-1/x的最大值等于______.

12.已知圓柱的底面半徑為1,母線長與底面的直徑相等,則該圓柱的表面積為_____.

13.

14.若f(x)=2x3+1,則f(1)=

。

15.

三、計(jì)算題(5題)16.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

17.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

18.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

19.解不等式4<|1-3x|<7

20.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

四、證明題(2題)21.若x∈(0,1),求證:log3X3<log3X<X3.

22.己知sin(θ+α)=sin(θ+β),求證:

五、簡答題(2題)23.簡化

24.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.

六、綜合題(2題)25.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.

26.己知點(diǎn)A(0,2),5(-2,-2).(1)求過A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.

參考答案

1.A橢圓的定義c2=a2-b2=7,所以c=,所以焦點(diǎn)坐標(biāo)為(,0)(-,0).

2.A補(bǔ)集的運(yùn)算.CuM={2,4,6}.

3.C點(diǎn)到直線的距離公式.圓(x+1)2+y2=2的圓心坐標(biāo)為(-1,0),由y=x+3得x-y+3=0,則圓心到直線的距離d=

4.C二次函數(shù)圖像的性質(zhì).根據(jù)二次函數(shù)圖象的對(duì)稱性有-a/2≥1,得a≤-2.

5.A幾何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]區(qū)間長度為1,區(qū)間[1,4]長度為3,所求概率為1/3

6.B由題可知,f(x)=f(-x),所以函數(shù)是偶函數(shù)。

7.C橢圓的定義.由題意知25-m2=16,解得m2=9,又m<0,所以m=-3.

8.B集合的運(yùn)算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

9.B值的計(jì)算.g(π)=0,f(g(π))=f(0)=0

10.D

11.

基本不等式的應(yīng)用.

12.6π圓柱的側(cè)面積計(jì)算公式.利用圓柱的側(cè)面積公式求解,該圓柱的側(cè)面積為27x1x2=4π,一個(gè)底面圓的面積是π,所以該圓柱的表面積為4π+27π=6π.

13.4.5

14.3f(1)=2+1=3.

15.33

16.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

17.

18.

19.

20.

21.

22.

23.

24.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時(shí)

故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)

25.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時(shí),b

=4,此時(shí)r=4,圓的方程為(x-4)2

+(y-4)2=16當(dāng)a=1時(shí),b

=-1,此時(shí)r=1,圓的方程為(x-1)2

+(y+1)2=1

26.解:(1)直線l過A(0,2),B(-2,-2)兩點(diǎn),根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論