2022-2023學年山西省運城市垣曲縣數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第1頁
2022-2023學年山西省運城市垣曲縣數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第2頁
2022-2023學年山西省運城市垣曲縣數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第3頁
2022-2023學年山西省運城市垣曲縣數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第4頁
2022-2023學年山西省運城市垣曲縣數(shù)學九年級第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.今年來某縣加大了對教育經(jīng)費的投入,2013年投入2500萬元,2015年投入3500萬元.假設該縣投入教育經(jīng)費的年平均增長率為x,根據(jù)題意列方程,則下列方程正確的是()A.2500x=3500B.2500(1+x)=3500C.2500(1+x%)=3500D.2500(1+x)+2500(1+x)=35002.如圖,的半徑為,圓心到弦的距離為,則的長為()A. B. C. D.3.某種植基地2016年蔬菜產(chǎn)量為80噸,預計2018年蔬菜產(chǎn)量達到100噸,求蔬菜產(chǎn)量的年平均增長率,設蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004.如圖,點C、D在圓O上,AB是直徑,∠BOC=110°,AD∥OC,則∠AOD=()A.70° B.60° C.50° D.40°5.方程x2﹣2x+3=0的根的情況是()A.有兩個相等的實數(shù)根 B.只有一個實數(shù)根C.沒有實數(shù)根 D.有兩個不相等的實數(shù)根6.我們知道,一元二次方程可以用配方法、因式分解法或求根公式進行求解.對于一元三次方程ax3+bx2+cx+d=0(a,b,c,d為常數(shù),且a≠0)也可以通過因式分解、換元等方法,使三次方程“降次”為二次方程或一次程,進而求解.這兒的“降次”所體現(xiàn)的數(shù)學思想是()A.轉(zhuǎn)化思想 B.分類討論思想C.數(shù)形結(jié)合思想 D.公理化思想7.如圖所示為兩把按不同比例尺進行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,則上面直尺的刻度16與下面直尺對應的刻度是()A.19.4 B.19.5 C.19.6 D.19.78.以下、、、四個三角形中,與左圖中的三角形相似的是()A. B. C. D.9.如圖,點C在弧ACB上,若∠OAB=20°,則∠ACB的度數(shù)為()A. B. C. D.10.若與的相似比為1:4,則與的周長比為()A.1:2 B.1:3 C.1:4 D.1:16二、填空題(每小題3分,共24分)11.如圖,二次函數(shù)y=x(x﹣3)(0≤x≤3)的圖象,記為C1,它與x軸交于點O,A1;將C1點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;……若P(2020,m)在這個圖象連續(xù)旋轉(zhuǎn)后的所得圖象上,則m=_____.12.煙花廠為春節(jié)特別設計制作一種新型禮炮,這種禮炮的升空高度h(m)與飛行時間t(s)的關系式是h=,若這種禮炮在點火升空到最高點引爆,則從點火升空到引爆需要的時間是____________.13.矩形的對角線長13,一邊長為5,則它的面積為_____.14.如圖,將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,點P是優(yōu)弧上一點,則∠APB的度數(shù)為_____.15.比較三角函數(shù)值的大?。簊in30°_____cos30°(填入“>”或“<”).16.如圖,一輛汽車沿著坡度為的斜坡向下行駛50米,則它距離地面的垂直高度下降了米.17.使式子有意義的x的取值范圍是____.18.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.三、解答題(共66分)19.(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,則稱a是該方程的中點值.(1)方程x2-8x+3=0的中點值是________;(2)已知x2-mx+n=0的中點值是3,其中一個根是2,求mn的值.20.(6分)在矩形ABCD中,AB=3,BC=4,E,F(xiàn)是對角線AC上的兩個動點,分別從A,C同時出發(fā)相向而行,速度均為1cm/s,運動時間為t秒,0≤t≤1.(1)AE=________,EF=__________(2)若G,H分別是AB,DC中點,求證:四邊形EGFH是平行四邊形.(相遇時除外)(3)在(2)條件下,當t為何值時,四邊形EGFH為矩形.21.(6分)如圖,拋物線y=ax2+bx+c(a≠0)過點M(-2,3),頂點坐標為N(-1,4),且與x軸交于A、B兩點,與y軸交于C點.(1)求拋物線的解析式;(2)點P為拋物線對稱軸上的動點,當PM+PB的值最小時,求點P的坐標;22.(8分)如圖,在平面直角坐標系中,頂點為(11,﹣)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側(cè)),已知A點坐標為(0,8).(1)求此拋物線的解析式;(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有怎樣的位置關系,并給出證明;(3)連接AC,在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形,若存在,請直接寫出點P的坐標,若不存在,請說明理由.23.(8分)如圖①,在直角坐標系中,點A的坐標為(1,0),以OA為邊在第一象限內(nèi)作正方形OABC,點D是x軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設M為正方形DBFE的中心,直線MA交y軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.(1)試找出圖1中的一個損矩形;(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;(4)在圖②中,過點M作MG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐標.24.(8分)(x2+y25.(10分)如圖,點A,C,D,B在以O點為圓心,OA長為半徑的圓弧上,AC=CD=DB,AB交OC于點E.求證:AE=CD.26.(10分)已知反比例函數(shù)的圖象過點P(-1,3),求m的值和該反比例函數(shù)的表達式.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)2013年教育經(jīng)費額×(1+平均年增長率)2=2015年教育經(jīng)費支出額,列出方程即可.【詳解】設增長率為x,根據(jù)題意得2500×(1+x)2=3500,故選B.【點睛】本題考查一元二次方程的應用--求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關系為a(1±x)2=b.(當增長時中間的“±”號選“+”,當下降時中間的“±”號選“-”).2、D【分析】過點O作OC⊥AB于C,連接OA,根據(jù)勾股定理求出AC長,根據(jù)垂徑定理得出AB=2CA,代入求出即可.【詳解】過點O作OC⊥AB于C,連接OA,則OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC過圓心O,∴AB=2AC=16,故選D.【點睛】本題主要考查了勾股定理和垂徑定理等知識點的應用,正確作出輔助線是關鍵.3、A【解析】利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預計2018年蔬菜產(chǎn)量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.4、D【分析】根據(jù)平角的定義求得∠AOC的度數(shù),再根據(jù)平行線的性質(zhì)及三角形內(nèi)角和定理即可求得∠AOD的度數(shù).【詳解】∵∠BOC=110°,∠BOC+∠AOC=180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°?2∠A=40°故選:D.【點睛】此題考查圓內(nèi)角度求解,解題的關鍵是熟知圓的基本性質(zhì)、平行線性質(zhì)及三角形內(nèi)角和定理的運用.5、C【解析】試題分析:利用根的判別式進行判斷.解:∵∴此方程無實數(shù)根.故選C.6、A【分析】解高次方程的一般思路是逐步降次,所體現(xiàn)的數(shù)學思想就是轉(zhuǎn)化思想.【詳解】由題意可知,解一元三次方程的過程是將三次轉(zhuǎn)化為二次,二次轉(zhuǎn)化為一次,從而解題,在解題技巧上是降次,在解題思想上是轉(zhuǎn)化思想.故選:A.【點睛】本題考查高次方程;通過題意,能夠從中提取出解高次方程的一般方法,同時結(jié)合解題過程分析出所運用的解題思想是解題的關鍵.7、C【分析】根據(jù)兩把直尺在刻度10處是對齊的及上面直尺的刻度11與下面直尺對應的刻度是11.6,得出上面直尺的10個小刻度,對應下面直尺的16個小刻度,進而判斷出上面直尺的刻度16與下面直尺對應的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對齊的,觀察圖可知上面直尺的刻度11與下面直尺對應的刻度是11.6,即上面直尺的10個小刻度,對應下面直尺的16個小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,因此上面直尺的刻度16與下面直尺對應的刻度是18+1.6=19.6,故答案為C【點睛】本題考查了學生對圖形的觀察能力,通過圖形得出上面直尺的10個小刻度,對應下面直尺的16個小刻度是解題的關鍵.8、B【分析】由于已知三角形和選擇項的三角形都放在小正方形的網(wǎng)格中,設正方形的邊長為1,所以每一個三角形的邊長都是可以表示出,然后根據(jù)三角形的對應邊成比例即可判定選擇項.【詳解】設小正方形的邊長為1,根據(jù)勾股定理,所給圖形的邊分別為,,,所以三邊之比為A、三角形的三邊分別為、、,三邊之比為::,故本選項錯誤;B、三角形的三邊分別為、、,三邊之比為,故本選項正確;C、三角形的三邊分別為、、,三邊之比為,故本選項錯誤;

D、三角形的三邊分別為、、,三邊之比為,故本選項錯誤.

故選:B.【點睛】本題考查了相似三角形的判定,勾股定理的應用,熟練掌握網(wǎng)格結(jié)構(gòu),觀察出所給圖形的直角三角形的特點是解題的關鍵.9、C【分析】根據(jù)圓周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度數(shù).【詳解】解:∵∠ACB=∠AOB,

而∠AOB=180°-2×20°=140°,

∴∠ACB=×140°=70°.

故選:C.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.10、C【分析】根據(jù)相似三角形的性質(zhì)解答即可.【詳解】解:∵與的相似比為1:4,∴與的周長比為:1:4.故選:C.【點睛】本題考查了相似三角形的性質(zhì),屬于應知應會題型,熟練掌握相似三角形的性質(zhì)是解題關鍵.二、填空題(每小題3分,共24分)11、1.【分析】x(x﹣3)=0得A1(3,0),再根據(jù)旋轉(zhuǎn)的性質(zhì)得OA1=A1A1=A1A3=…=A673A674=3,所以拋物線C764的解析式為y=﹣(x﹣1019)(x﹣1011),然后計算自變量為1010對應的函數(shù)值即可.【詳解】當y=0時,x(x﹣3)=0,解得x1=0,x1=3,則A1(3,0),∵將C1點A1旋轉(zhuǎn)180°得C1,交x軸于點A1;將C1繞點A1旋轉(zhuǎn)180°得C3,交x軸于點A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴拋物線C764的解析式為y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案為1.【點睛】本題考查圖形類規(guī)律,解題的關鍵是掌握圖形類規(guī)律的基本解題方法.12、4s【分析】將二次函數(shù)化為頂點式,頂點橫坐標即為所求.【詳解】解:∵h==,∴當t=4時,h取得最大值,∴從點火升空到引爆需要的時間為4s.故答案為:4s.【點睛】本題考查二次函數(shù)的實際應用問題,判斷出所求時間為二次函數(shù)的頂點坐標的橫坐標是關鍵.13、1【分析】先運用勾股定理求出另一條邊,再運用矩形面積公式求出它的面積.【詳解】∵對角線長為13,一邊長為5,∴另一條邊長==12,∴S矩形=12×5=1;故答案為:1.【點睛】本題考查了矩形的性質(zhì)以及勾股定理,本題關鍵是運用勾股定理求出另一條邊.14、60°【解析】分析:作半徑OC⊥AB于D,連結(jié)OA、OB,如圖,根據(jù)折疊的性質(zhì)得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關系得到∠OAD=30°,接著根據(jù)三角形內(nèi)角和定理可計算出∠AOB=120°,然后根據(jù)圓周角定理計算∠APB的度數(shù).詳解:如圖作半徑OC⊥AB于D,連結(jié)OA、OB.∵將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°.∵OA=OB,∴∠ABO=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故答案為60°.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了含30度的直角三角形三邊的關系和折疊的性質(zhì),求得∠OAD=30°是解題的關鍵.15、<【分析】直接利用特殊角的三角函數(shù)值分別代入比較得出答案.【詳解】解:∵sin30°=,cos30°=.∴sin30°<cos30°.故答案為:<.【點睛】本題主要考查了特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題關鍵.16、25【分析】設出垂直高度,表示出水平距離,利用勾股定理求解即可.【詳解】解:設垂直高度下降了x米,則水平前進了x米.根據(jù)勾股定理可得:x2+(x)2=1.解得x=25,即它距離地面的垂直高度下降了25米.【點睛】此題考查三角函數(shù)的應用.關鍵是熟悉且會靈活應用公式:tanα(坡度)=垂直高度÷水平寬度,綜合利用了勾股定理.17、【分析】根據(jù)二次根式有意義的條件:被開方數(shù)為非負數(shù)求解即可.【詳解】解:由題意得:x-1≥0,x-1≠0,

解得:x≥1,x≠1.

故答案為x≥1且x≠1.【點睛】本題考查了二次根式有意義的條件,解答本題的關鍵是掌握被開方數(shù)為非負數(shù)、分母不為零.18、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數(shù)如圖,由圖象可知,當直線y=x+b經(jīng)過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.【點睛】本題考查了二次函數(shù)圖像的折疊問題,解決本題的關鍵是能夠根據(jù)題意畫出二次函數(shù)折疊后的圖像,掌握二次函數(shù)與一元二次方程的關系.三、解答題(共66分)19、(1)4;(2)48.【分析】(1)根據(jù)中點值的定義進行求解即可;(2)根據(jù)中點值的定義可求得m的值,再將方程的根代入方程可求得n的值,由此即可求得答案.【詳解】(1),x2-2×4x+3=0,42-3=13>0,所以中點值為4,故答案為4;(2)由中點值的定義得:,,,將代入方程,得:,,.【點睛】本題考查了一元二次方程的根,新定義,弄懂新定義是解題的關鍵.20、(1)t,;(2)詳見解析;(3)當t為0.1秒或4.1時,四邊形EGFH為矩形【分析】(1)先利用勾股定理求出AC的長度,再根據(jù)路程=速度×時間即可求出AE的長度,而當0≤t≤2.1時,;當2.1<t≤1時,即可求解;(2)先通過SAS證明△AFG≌△CEH,由此可得到GF=HE,,從而有,最后利用一組對邊平行且相等即可證明;(3)利用矩形的性質(zhì)可知FG=EF,求出GH,用含t的代數(shù)式表示出EF,建立方程求解即可.【詳解】(1)當0≤t≤2.1時,當2.1<t≤1時,∴故答案為:t,(2)證明:∵四邊形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC===1,∠GAF=∠HCE,∵G、H分別是AB、DC的中點,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG與△CEH中,,∴,∴GF=HE,∴四邊形EGFH是平行四邊形.(3)解:如圖所示,連接GH,由(1)可知四邊形EGFH是平行四邊形∵點G、H分別是矩形ABCD的邊AB、DC的中點,∴GH=BC=4,∴當EF=GH=4時,四邊形EGFH是矩形,分兩種情況:①當0≤t≤2.1時,AE=CF=t,EF=1﹣2t=4,解得:t=0.1②當2.1<t≤1時,,AE=CF=t,EF=2t-1=4,解得:t=4.1即:當t為0.1秒或4.1時,四邊形EGFH為矩形【點睛】本題主要考查平行四邊形的判定及矩形的性質(zhì),掌握平行四邊形的判定方法及矩形的性質(zhì)是解題的關鍵.21、(1)二次函數(shù)的解析式為:;(2)點P的坐標為(-1,2)【分析】(1)把頂點N的坐標和點M的坐標代入計算,即可求出拋物線的解析式;(2)先求出點A、B的坐標,連接AM,與對稱軸相交于點P,求出直線AM的解析式,即可求出點P的坐標.【詳解】解:(1)由拋物線y=ax2+bx+c(a≠0)的圖象過點M(-2,3),頂點坐標為N(-1,4),得到關于a、b、c的方程組:解得:a=-1,b=2,c=3,∴二次函數(shù)的解析式為:.(2)如圖:連接AM,與對稱軸相交于點P,連接BP,∵拋物線與x軸相交于點A、B,則點A、B關于拋物線的對稱軸對稱,∴PA=PB,∴PM+PB的最小值為PA+PM=AM的長度;∵,令y=0,則∴,∴,,∴點A的坐標為:(1,0),∵點M的坐標為(2,3),∴直線AM的解析式為:,當x=時,y=2,∴點P的坐標為(1,2);【點睛】本題考查了二次函數(shù)的性質(zhì),解一元二次方程,一次函數(shù)的性質(zhì),待定系數(shù)法求解析式,最短路徑問題,解題的關鍵是熟練掌握所學的知識,正確得到點P的坐標.22、(1);(2)對稱軸l與⊙C相交,見解析;(3)P(30,﹣2)或(41,100)【分析】(1)已知拋物線的頂點坐標,可用頂點式設拋物線的解析式,然后將A點坐標代入其中,即可求出此二次函數(shù)的解析式;(2)根據(jù)拋物線的解析式,易求得對稱軸l的解析式及B、C的坐標,分別求出直線AB、BD、CE的解析式,再求出CE的長,與到拋物線的對稱軸的距離相比較即可;(3)分∠ACP=90°、∠CAP=90°兩種情況,分別求解即可.【詳解】解:(1)設拋物線為y=a(x﹣11)2﹣,∵拋物線經(jīng)過點A(0,8),∴8=a(0﹣11)2﹣,解得a=,∴拋物線為y==;(2)設⊙C與BD相切于點E,連接CE,則∠BEC=∠AOB=90°.∵y==0時,x1=11,x2=1.∴A(0,8)、B(1,0)、C(11,0),∴OA=8,OB=1,OC=11,BC=10;∴AB===10,∴AB=BC.∵AB⊥BD,∴∠ABC=∠EBC+90°=∠OAB+90°,∴∠EBC=∠OAB,∴,∴△OAB≌△EBC(AAS),∴OB=EC=1.設拋物線對稱軸交x軸于F.∵x=11,∴F(11,0),∴CF=11﹣11=5<1,∴對稱軸l與⊙C相交;(3)由點A、C的坐標得:直線AC的表達式為:y=﹣x+8,①當∠ACP=90°時,則直線CP的表達式為:y=2x﹣32,聯(lián)立直線和拋物線方程得,解得:x=30或11(舍去),故點P(30,﹣2);當∠CAP=90°時,同理可得:點P(41,100),綜上,點P(30,﹣2)或(41,100);【點睛】本題考查了二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)、直線與圓的位置關系、圖形面積的求法等知識,正確表示出S△PAC=S△AQP+S△CQP是解題關鍵.23、(1)詳見解析;(2)詳見解析;(3)N點的坐標為(0,﹣1);(4)D點坐標為(3,0).【解析】試題分析:(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對角是直角的四邊形即可;(2)證明四邊形BADM四個頂點到BD的中點距離相等即可;(3)利用同弧所對的圓周角相等可得∠MAD=∠MBD,進而得到OA=ON,即可求得點N的坐標;(4)根據(jù)正方形的性質(zhì)及損矩形含有的直角,利用勾股定理求解.(1)四邊形ABMD為損矩形;(2)取BD中點H,連結(jié)MH,AH∵四邊形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論