2023學(xué)年廣東省廣州市增城區(qū)四校高考數(shù)學(xué)五模試卷(含解析)_第1頁
2023學(xué)年廣東省廣州市增城區(qū)四校高考數(shù)學(xué)五模試卷(含解析)_第2頁
2023學(xué)年廣東省廣州市增城區(qū)四校高考數(shù)學(xué)五模試卷(含解析)_第3頁
2023學(xué)年廣東省廣州市增城區(qū)四校高考數(shù)學(xué)五模試卷(含解析)_第4頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元2.已知集合,集合,則等于()A. B.C. D.3.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實數(shù)都有,當(dāng)時,,若,則實數(shù)的取值范圍是()A. B. C. D.4.在三角形中,,,求()A. B. C. D.5.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.46.設(shè),均為非零的平面向量,則“存在負數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.過拋物線的焦點的直線交該拋物線于,兩點,為坐標(biāo)原點.若,則直線的斜率為()A. B. C. D.8.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.9.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標(biāo)為()A. B. C. D.10.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.311.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.12.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點,則該點落在區(qū)域的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數(shù),滿足,則的最小值為__________.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.已知數(shù)列的首項,函數(shù)在上有唯一零點,則數(shù)列|的前項和__________.16.已知雙曲線的左焦點為,、為雙曲線上關(guān)于原點對稱的兩點,的中點為,的中點為,的中點為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?18.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時,求的面積.19.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.20.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.21.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.22.(10分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】

根據(jù)2018年的家庭總收人為元,且就醫(yī)費用占得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【題目詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【答案點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.2、B【答案解析】

求出中不等式的解集確定出集合,之后求得.【題目詳解】由,所以,故選:B.【答案點睛】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.3、B【答案解析】

先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【題目詳解】令,則當(dāng)時,,又,所以為偶函數(shù),從而等價于,因此選B.【答案點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.4、A【答案解析】

利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【題目詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【答案點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計算能力,屬于中等題.5、A【答案解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標(biāo),由此可得雙曲線的焦點坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【題目詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【答案點睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點的坐標(biāo),意在考查學(xué)生對這些知識的理解掌握水平.6、B【答案解析】

根據(jù)充分條件、必要條件的定義進行分析、判斷后可得結(jié)論.【題目詳解】因為,均為非零的平面向量,存在負數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負數(shù),使得”是“”的充分不必要條件.故選B.【答案點睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.7、D【答案解析】

根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【題目詳解】解:拋物線的焦點,準(zhǔn)線方程為,設(shè),則,故,此時,即.則直線的斜率.故選:D.【答案點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.8、A【答案解析】

由題可得出的坐標(biāo)為,再利用點對稱的性質(zhì),即可求出和.【題目詳解】根據(jù)題意,,所以點的坐標(biāo)為,又,所以.故選:A.【答案點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.9、C【答案解析】

利用復(fù)數(shù)的運算法則、幾何意義即可得出.【題目詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對應(yīng)的點的坐標(biāo)為(﹣1,2),故選:C【答案點睛】本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.10、B【答案解析】

根據(jù)極值點處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【題目詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【答案點睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.11、C【答案解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【題目詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【答案點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.12、C【答案解析】

據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【題目詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【答案點睛】本題主要考查了幾何概率的計算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

由約束條件先畫出可行域,然后求目標(biāo)函數(shù)的最小值.【題目詳解】由約束條件先畫出可行域,如圖所示,由,即,當(dāng)平行線經(jīng)過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【答案點睛】本題考查了線性規(guī)劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.14、3【答案解析】

雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【題目詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【答案點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、【答案解析】

由函數(shù)為偶函數(shù),可得唯一零點為,代入可得數(shù)列的遞推關(guān)系式,再進行配湊轉(zhuǎn)換為等比數(shù)列,最后運用分部求和可得答案.【題目詳解】因為為偶函數(shù),在上有唯一零點,所以,∴,∴,∴為首項為2,公比為2的等比數(shù)列.所以,.故答案為:【答案點睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點,同時也考查了由遞推關(guān)系式求數(shù)列的通項,考查了數(shù)列的分部求和,屬于中檔題.16、【答案解析】

設(shè),,根據(jù)中點坐標(biāo)公式可得坐標(biāo),利用可得到點坐標(biāo)所滿足的方程,結(jié)合直線斜率可求得,進而求得;將點坐標(biāo)代入雙曲線方程,結(jié)合焦點坐標(biāo)可求得,進而得到離心率.【題目詳解】左焦點為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【答案點睛】本題考查直線與雙曲線的綜合應(yīng)用問題,涉及到直線截雙曲線所得線段長度的求解、雙曲線離心率的求解問題;關(guān)鍵是能夠通過設(shè)點的方式,結(jié)合直線斜率、垂直關(guān)系、點在雙曲線上來構(gòu)造方程組求得所需變量的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)30;(2),比較劃算.【答案解析】

(1)由頻率和為1求出,根據(jù)的值求出保費的平均值,然后解一元一次不等式即可求出結(jié)果,最后取近似值即可;(2)分別計算參保與不參保時的期望,,比較大小即可.【題目詳解】解:(1)由,解得.保險公司每年收取的保費為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項保險,則的取值為∴(元).②若該老人沒有購買此項保險,則的取值為.∴(元).∴年齡為的該老人購買此項保險比較劃算.【答案點睛】本題考查學(xué)生利用相關(guān)統(tǒng)計圖表知識處理實際問題的能力,掌握頻率分布直方圖的基本性質(zhì),知道數(shù)學(xué)期望是平均數(shù)的另一種數(shù)學(xué)語言,為容易題.18、(1);(2)【答案解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【題目詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【答案點睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學(xué)生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.19、(1),;(2).【答案解析】

(1)先將曲線化為普通方程,再由直角坐標(biāo)系與極坐標(biāo)系之間的轉(zhuǎn)化關(guān)系:,可得極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)由已知可得出射線的極坐標(biāo)方程為,聯(lián)立和的極坐標(biāo)方程可得點A和點B的極坐標(biāo),從而得出,由的范圍可求得的取值范圍.【題目詳解】(1)曲線的普通方程為,即,其極坐標(biāo)方程為;曲線的極坐標(biāo)方程為,即,其直角坐標(biāo)方程為;(2)射線的極坐標(biāo)方程為,聯(lián)立,聯(lián)立,的取值范圍是【答案點睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標(biāo)方程與普通方程的互化,以及在極坐標(biāo)下的直線與圓和拋物線的位置關(guān)系,屬于中檔題.20、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【答案解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【題目詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時,即,則由,,得,則,此時,的面積為;②當(dāng)時,則,即,則由,解得,,.綜上,的面積為.【答案點睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時也考查了三角形面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論