高三數(shù)學三角函數(shù)、解三角形章末復習測試_第1頁
高三數(shù)學三角函數(shù)、解三角形章末復習測試_第2頁
高三數(shù)學三角函數(shù)、解三角形章末復習測試_第3頁
高三數(shù)學三角函數(shù)、解三角形章末復習測試_第4頁
高三數(shù)學三角函數(shù)、解三角形章末復習測試_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

8/82019高三數(shù)學三角函數(shù)、解三角形章末復習測試為了方便同學們復習,提高同學們的復習效率,對這一年的學習有一個更好的穩(wěn)固,本文整理了高三數(shù)學三角函數(shù)、解三角形章末復習,具體內(nèi)容請看下文。高三數(shù)學三角函數(shù)、解三角形章末復習測試(有答案)一、選擇題(本大題共12小題,每題5分,共60分.在每題給出的四個選項中,只有一項為哪一項符合題目要求的)1.是第一象限角,tan=34,那么sin等于()A.45B.35C.-45D.-35解析B由2kkZ,sincos=34,sin2+cos2=1,得sin=35.2.在△ABC中,sin(A-B)cosB+cos(A-B)sinB1,那么△ABC是()A.直角三角形B.銳角三角形C.鈍角三角形D.等邊三角形解析Asin(A-B)cosB+cos(A-B)sinB=sin[(A-B)+B]=sinA1,又sinA1,sinA=1,A=90,故△ABC為直角三角形.3.在△ABC中,A=60,AC=16,面積為2203,那么BC的長度為()A.25B.51C.493D.49解析D由S△ABC=12ABACsin60=43AB=2203,得AB=55,再由余弦定理,有BC2=162+552-21655cos60=2401,得BC=49.4.設,都是銳角,那么以下各式中成立的是()A.sin(+sin+sinB.cos(+coscosC.sin(+sin(-)D.cos(+cos(-)解析C∵sin(+)=sincos+cossin,sin(-)=sincos-cossin,又∵、都是銳角,cossin0,故sin(+sin(-).5.張曉華同學騎電動自行車以24km/h的速度沿著正北方向的公路行駛,在點A處望見電視塔S在電動車的北偏東30方向上,15min后到點B處望見電視塔在電動車的北偏東75方向上,那么電動車在點B時與電視塔S的距離是()A.22kmB.32kmC.33kmD.23km解析B如圖,由條件知AB=241560=6.在△ABS中,BAS=30,AB=6,ABS=180-75=105,所以ASB=45.由正弦定理知BSsin30=ABsin45,所以BS=ABsin30sin45=32.應選B.(2019威海一模)假設函數(shù)y=Asin(x+)+m的最大值為4,最小值為0,最小正周期為2,直線x=3是其圖象的一條對稱軸,那么它的解析式是()A.y=4sin4x+B.y=2sin2x+3+2C.y=2sin4x+3+2D.y=2sin4x+6+2解析D∵A+m=4,-A+m=0,A=2,m=2.∵T=2,=2T=4.y=2sin(4x+)+2.∵x=3是其對稱軸,sin43+=1.4=(kZ).-56(kZ).當k=1時,6,應選D.7.函數(shù)y=sin(2x+)是R上的偶函數(shù),那么的值是()A.0B.C.D.解析C當2時,y=sin2x+2=cos2x,而y=cos2x是偶函數(shù).8.在△ABC中cosA+sinA=cosB+sinB是C=90的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件解析BC=90時,A與B互余,sinA=cosB,cosA=sinB,有cosA+sinA=cosB+sinB成立;但當A=B時,也有cosA+sinA=cosB+sinB成立,故cosA+sinA=cosB+sinB是C=90的必要不充分條件.9.△ABC的三邊分別為a,b,c,且滿足b2=ac,2b=a+c,那么此三角形是()A.鈍角三角形B.直角三角形C.等腰直角三角形D.等邊三角形解析D∵2b=a+c,4b2=(a+c)2,又∵b2=ac,(a-c)2=0,a=c,2b=a+c=2a,b=a,即a=b=c.10.f(x)=Asin(x+0,0)在x=1處取最大值,那么()A.f(x-1)一定是奇函數(shù)B.f(x-1)一定是偶函數(shù)C.f(x+1)一定是奇函數(shù)D.f(x+1)一定是偶函數(shù)解析D∵f(x)=Asin(x+0,0)在x=1處取最大值,f(x+1)在x=0處取最大值,即y軸是函數(shù)f(x+1)的對稱軸,函數(shù)f(x+1)是偶函數(shù).11.函數(shù)y=sin2x-3在區(qū)間-上的簡圖是()解析A令x=0得y=sin-3=-32,排除B,D.由f-3=0,f6=0,排除C.12.假設tan=lg(10a),tan=lg1a,且+4,那么實數(shù)a的值為()A.1B.110C.1或110D.1或10解析Ctan(+)=1tan+tan1-tantan=lg10a+lg1a1-lg10alg1a=1lg2a+lga=0,所以lga=0或lga=-1,即a=1或110.二、填空題(本大題共4小題,每題5分,共20分.把答案填在題中橫線上)13.(2019黃岡模擬)函數(shù)f(x)=Acos(x+)的圖象如圖所示,f2=-23,那么f(0)=________.解析由圖象可得最小正周期為2所以f(0)=f23,注意到22關(guān)于712對稱,故f22=23.【答案】2314.設a、b、c分別是△ABC中角A、B、C所對的邊,sin2A+sin2B-sinAsinB=sin2C,且滿足ab=4,那么△ABC的面積為________.解析由sin2A+sin2B-sinAsinB=sin2C,得a2+b2-ab=c2,2cosC=1.C=60.又∵ab=4,S△ABC=12absinC=124sin60=3.【答案】315.在直徑為30m的圓形廣場中央上空,設置一個照明光源,射向地面的光呈圓形,且其軸截面頂角為120,假設要光源恰好照亮整個廣場,那么光源的高度為________m.解析軸截面如圖,那么光源高度h=15tan60=53(m).【答案】5316.如下圖,圖中的實線是由三段圓弧連接而成的一條封閉曲線C,各段弧所在的圓經(jīng)過同一點P(點P不在C上)且半徑相等.設第i段弧所對的圓心角為i(i=1,2,3),那么cos13cos2+33-sin13sin2+33=________.解析記相應的三個圓的圓心分別是O1,O2,O3,半徑為r,依題意知,可考慮特殊情形,從而求得相應的值.當相應的每兩個圓的公共弦都恰好等于圓半徑時,易知有1=2=3=23=43,此時cos13cos2+33-sin13sin2+33=cos1+2+33=cos43=cos3=-cos3=-12.【答案】-12三、解答題(本大題共6小題,共70分.解容許寫出文字說明、證明過程或演算步驟)17.(10分)在△ABC中,如果lga-lgc=lgsinB=lg22,且B為銳角,試判斷此三角形的形狀.解析∵lgsinB=lg22,sinB=22,∵B為銳角,B=45.又∵lga-lgc=lg22,ac=22.由正弦定理,得sinAsinC=22,2sinC=2sinA=2sin(135-C),即sinC=sinC+cosC,cosC=0,C=90,故△ABC為等腰直角三角形.18.(12分)函數(shù)f(x)=2cos2x+2sinxcosx+1(xR,0)的最小正周期是2.(1)求的值;(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.解析(1)f(x)=1+cos2x+sin2x+1=sin2x+cos2x+2=2sin2x+4+2.由題設,函數(shù)f(x)的最小正周期是2,可得2=2,所以=2.(2)由(1)知,f(x)=2sin4x+4+2.當4x+2+2kZ),即x=2(kZ)時,sin4x+4取得最大值1,所以函數(shù)f(x)的最大值是2+2,此時x的集合為xx=2,kZ.19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且sinAa=3cosCc.(1)求角C的大小;(2)如果a+b=6,CACB=4,求c的值.解析(1)因為asinA=csinC,sinAa=3cosCc,所以sinC=3cosC.所以tanC=3.因為C(0,),所以C=3.(2)因為CACB=|CA||CB|cosC=12ab=4,所以ab=8.因為a+b=6,根據(jù)余弦定理,得c2=a2+b2-2abcosC=(a+b)2-3ab=12.所以c的值為23.20.(12分)在△ABC中,a,b,c分別是角A,B,C的對邊,m=(2b-c,cosC),n=(a,cosA),且m∥n.(1)求角A的大小;(2)求y=2sin2B+cos3-2B的值域.解析(1)由m∥n得(2b-c)cosA-acosC=0.由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0.所以2sinBcosA-sin(A+C)=0,即2sinBcosA-sinB=0.因為A,B(0,),所以sinB0,cosA=12,所以A=3.(2)y=2sin2B+cos3cos2B+sin3sin2B=1-12cos2B+32sin2B=sin2B-6+1.由(1)得0所以sin2B--12,1,所以y12,2.21.(12分)設函數(shù)f(x)=sin(2x+0)的圖象過點8,-1.(1)求(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;(3)畫出函數(shù)y=f(x)在區(qū)間[0,]上的圖象.解析(1)∵f(x)=sin(2x+)的圖象過點8,-1,-1=sin,4=2k2(kZ),又(-,0),4.f(x)=sin2x-34.(2)由題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論