版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022/10/29FinancialEngineeringChapter10
ModeloftheBehavior
ofStockPrices
2022/10/29FinancialEngineeringStochasticProcessesAstochasticprocessisavariablethatevolvesovertimeinawaythatisatleastinpartrandom.i.e.temperatureandIBMstockpriceAstochasticprocessisdefinedbyaprobabilitylawfortheevolutionxtofavariableovertimet.Forgiventimes,wecancalculatetheprobabilitythatthecorrespondingvaluesx1,x2,x3,etc.lieinsomespecifiedrange.2022/10/29FinancialEngineeringCategorizationofStochasticProcessesDiscretetime;discretevariableRandomwalk:ifcanonlytakeondiscretevaluesDiscretetime;continuousvariable
isanormallydistributedrandomvariablewithzeromean.Continuoustime;discretevariableContinuoustime;continuousvariable2022/10/29FinancialEngineeringModelingStockPricesWecanuseanyofthefourtypesofstochasticprocessestomodelstockpricesThecontinuoustime,continuousvariableprocessprovestobethemostusefulforthepurposesofvaluingderivativesecurities2022/10/29FinancialEngineeringMarkovProcessesInaMarkovprocessfuturemovementsinavariabledependonlyonwhereweare,notthehistoryofhowwegotwhereweareWewillassumethatstockpricesfollowMarkovprocesses2022/10/29FinancialEngineeringWeak-FormMarketEfficiencyTheassertionisthatitisimpossibletoproduceconsistentlysuperiorreturnswithatradingrulebasedonthepasthistoryofstockprices.Inotherwordstechnicalanalysisdoesnotwork.AMarkovprocessforstockpricesisclearlyconsistentwithweak-formmarketefficiency2022/10/29FinancialEngineeringExampleofaDiscreteTimeContinuousVariableModelAstockpriceiscurrentlyat$40Attheendof1yearitisconsideredthatitwillhaveaprobabilitydistributionof f(40,10)wheref(m,s)isanormaldistributionwithmeanmandstandarddeviations.2022/10/29FinancialEngineeringQuestionsWhatistheprobabilitydistributionofthestockpriceattheendof 2years? ?years? ?years?
Dtyears?Takinglimitswehavedefinedacontinuousvariable,continuoustimeprocess2022/10/29FinancialEngineeringVariances&StandardDeviationsInMarkovprocesseschangesinsuccessiveperiodsoftimeareindependentThismeansthatvariancesareadditiveStandarddeviationsarenotadditive2022/10/29FinancialEngineeringVariances&StandardDeviations(continued)Inourexampleitiscorrecttosaythatthevarianceis100peryear.Itisstrictlynotcorrecttosaythatthestandarddeviationis10peryear.2022/10/29FinancialEngineeringAWienerProcess(BrownianMotion)WeconsideravariablezwhosevaluechangescontinuouslyThechangeinasmallintervaloftimeDtisDz
ThevariablefollowsaWienerprocessif 1. 2.ThevaluesofDzforany2different(non-overlapping)periodsoftimeareindependent2022/10/29FinancialEngineeringPropertiesofaWienerProcessMeanof[z(T)–
z(0)]is0Varianceof[z(T)–
z(0)]isT
Standarddeviationof[z(T)–
z(0)]is2022/10/29FinancialEngineeringTakingLimits...Whatdoesanexpressioninvolvingdzanddtmean?ItshouldbeinterpretedasmeaningthatthecorrespondingexpressioninvolvingDzandDtistrueinthelimitasDttendstozeroInthisrespect,stochasticcalculusisanalogoustoordinarycalculus
2022/10/29FinancialEngineeringGeneralizedWienerProcessesAWienerprocesshasadriftrate(ieaveragechangeperunittime)of0andavariancerateof1InageneralizedWienerprocessthedriftrate&thevarianceratecanbesetequaltoanychosen constants2022/10/29FinancialEngineeringGeneralizedWienerProcesses
(continued)
ThevariablexfollowsageneralizedWienerprocesswithadriftrateofa&avariancerateofb2ifdx=adt+bdz
or:x(t)=x0+at+bz(t)2022/10/29FinancialEngineeringGeneralizedWienerProcesses
(continued)MeanchangeinxintimeTisaTVarianceofchangeinxintimeTisb2TStandarddeviationofchangeinxintimeTis2022/10/29FinancialEngineeringTheExampleRevisitedAstockpricestartsat40&hasaprobabilitydistributionoff(40,10)attheendoftheyearIfweassumethestochasticprocessisMarkovwithnodriftthentheprocessisdS=10dzIfthestockpricewereexpectedtogrowby$8onaverageduringtheyear,sothattheyear-enddistributionisf(48,10),theprocessisdS=8dt+10dz2022/10/29FinancialEngineeringWhy?(1)It’stheonlywaytomakethevarianceof(xT-x0)dependonTandnotonthenumberofsteps.1.DividetimeupintondiscreteperiodsoflengthΔt,n=T/Δt.IneachperiodthevariablexeithermovesupordownbyanamountΔhwiththeprobabilitiesofpandqrespectively.2022/10/29FinancialEngineeringWhy?(2)2.thedistributionforthefuturevaluesofx:E(Δx)=(p-q)ΔhE[(Δx)2]=p(Δh)2+q(-Δh)2So,thevarianceofΔxis:E[(Δx)2]-[E(Δx)]2=[1-(p-q)2](Δh)2=4pq(Δh)23.Sincethesuccessivestepsoftherandomwalkareindependent,thecumulatedchange(xT-x0)isabinomialrandomwalkwithmean:n(p-q)Δh=t(p-q)Δh/Δtandvariance:n[1-(p-q)2](Δh)2=
4pqt(Δh)2/Δt2022/10/29FinancialEngineeringWhy?(3)WhenletΔtgotozero,wewouldlikethemeanandvarianceof(xT-x0)toremainunchanged,andtobeindependentoftheparticularchoiceofp,q,ΔhandΔt.Theonlywaytogetitistoset:
and
then2022/10/29FinancialEngineeringWhy?(4)WhenΔtgoestozero,thebinomialdistributionconvergestoanormaldistribution,withmeanandvariance
2022/10/29FinancialEngineeringSamplepath(a=0.2peryear,b=1.0peryear)Takingatimeintervalofonemonth,thencalculatingatrajectoryforxtusingtheequation:
Atrendof0.2peryearimpliesatrendof0.0167permonth.Astandarddeviationof1.0peryearimpliesavarianceof1.0peryear,andhenceavarianceof0.0833permonth,sothatthestandarddeviationinmonthlytermsis0.2887.SeeInvestmentunderuncertainty,p662022/10/29FinancialEngineeringForecastusinggeneralizedBrownianMotionGiventhevalueofx(t)forDec.1974,X1974,theforecastedvalueofxforatimeTmonthsbeyondDec.1974isgivenby:SeeInvestmentunderuncertainty,p67Inthelongrun,thetrendisthedominantdeterminantofBrownianMotion,wherasintheshortrun,thevolatilityoftheprocessdominates.2022/10/29FinancialEngineeringWhyaGeneralizedWienerProcessisnotAppropriateforStocksForastockpricewecanconjecturethatitsexpectedproportionalchangeinashortperiodoftimeremainsconstantnotitsexpectedabsolutechangeinashortperiodoftimeWecanalsoconjecturethatouruncertaintyastothesizeoffuturestockpricemovementsisproportionaltothelevelofthestockpriceThepriceofastockneverfallbelowzero.2022/10/29FinancialEngineering
ItoProcessInanItoprocessthedriftrateandthevarianceratearefunctionsoftimedx=a(x,t)dt+b(x,t)dz
or:ThediscretetimeequivalentisonlytrueinthelimitasDttendstozero2022/10/29FinancialEngineeringAnItoProcessforStockPrices
wheremistheexpectedreturnsisthevolatility.Thediscretetimeequivalentis2022/10/29FinancialEngineeringMonteCarloSimulationWecansamplerandompathsforthestockpricebysamplingvaluesforeSupposem=0.14,s=0.20,andDt=0.01,then2022/10/29FinancialEngineeringMonteCarloSimulation–OnePath
2022/10/29FinancialEngineeringIto’sLemmaIfweknowthestochasticprocessfollowedbyx,Ito’slemmatellsusthestochasticprocessfollowedbysomefunctionG(x,t)Sinceaderivativesecurityisafunctionofthepriceoftheunderlying&time,Ito’slemmaplaysanimportantpartintheanalysisofderivativesecurities2022/10/29FinancialEngineeringTaylorSeriesExpansionATaylor’sseriesexpansionofG(x,t)gives2022/10/29FinancialEngineeringIgnoringTermsofHigherOrderThanDt2022/10/29FinancialEngineeringSubstitutingforDx2022/10/29FinancialEngineeringThee2DtTerm2022/10/29FinancialEngi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外貿(mào)維修物品合同范例
- 買方采購合同范例
- 小吃餐飲商標(biāo)轉(zhuǎn)讓合同范例
- 修路建設(shè)施工合同范例
- 土地分成協(xié)議合同模板
- 山姆會(huì)員合同范例
- 建筑焊接施工合同范例
- 法律變革研究模板
- 另類雇傭童工合同范例
- 關(guān)于地合同范例
- 20世紀(jì)時(shí)尚流行文化智慧樹知到期末考試答案2024年
- 第四章-國防動(dòng)員
- 北師大版五年級(jí)下冊(cè)數(shù)學(xué)分?jǐn)?shù)除法練習(xí)100題及答案
- 體育賽事與城市發(fā)展協(xié)同研究
- 系統(tǒng)升級(jí)報(bào)告
- 保安服務(wù)管理?xiàng)l例講座課件
- 甘肅省安全員-C證考試(專職安全員)題庫附答案
- 勞務(wù)經(jīng)濟(jì)人培訓(xùn)課件
- 輿情培訓(xùn)課件
- 無線電檢測方法和標(biāo)準(zhǔn)介紹
- 生物課程標(biāo)準(zhǔn):2023年義務(wù)教育版
評(píng)論
0/150
提交評(píng)論