期權(quán)及其衍生市場-chapter_第1頁
期權(quán)及其衍生市場-chapter_第2頁
期權(quán)及其衍生市場-chapter_第3頁
期權(quán)及其衍生市場-chapter_第4頁
期權(quán)及其衍生市場-chapter_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022/10/29FinancialEngineeringChapter10

ModeloftheBehavior

ofStockPrices

2022/10/29FinancialEngineeringStochasticProcessesAstochasticprocessisavariablethatevolvesovertimeinawaythatisatleastinpartrandom.i.e.temperatureandIBMstockpriceAstochasticprocessisdefinedbyaprobabilitylawfortheevolutionxtofavariableovertimet.Forgiventimes,wecancalculatetheprobabilitythatthecorrespondingvaluesx1,x2,x3,etc.lieinsomespecifiedrange.2022/10/29FinancialEngineeringCategorizationofStochasticProcessesDiscretetime;discretevariableRandomwalk:ifcanonlytakeondiscretevaluesDiscretetime;continuousvariable

isanormallydistributedrandomvariablewithzeromean.Continuoustime;discretevariableContinuoustime;continuousvariable2022/10/29FinancialEngineeringModelingStockPricesWecanuseanyofthefourtypesofstochasticprocessestomodelstockpricesThecontinuoustime,continuousvariableprocessprovestobethemostusefulforthepurposesofvaluingderivativesecurities2022/10/29FinancialEngineeringMarkovProcessesInaMarkovprocessfuturemovementsinavariabledependonlyonwhereweare,notthehistoryofhowwegotwhereweareWewillassumethatstockpricesfollowMarkovprocesses2022/10/29FinancialEngineeringWeak-FormMarketEfficiencyTheassertionisthatitisimpossibletoproduceconsistentlysuperiorreturnswithatradingrulebasedonthepasthistoryofstockprices.Inotherwordstechnicalanalysisdoesnotwork.AMarkovprocessforstockpricesisclearlyconsistentwithweak-formmarketefficiency2022/10/29FinancialEngineeringExampleofaDiscreteTimeContinuousVariableModelAstockpriceiscurrentlyat$40Attheendof1yearitisconsideredthatitwillhaveaprobabilitydistributionof f(40,10)wheref(m,s)isanormaldistributionwithmeanmandstandarddeviations.2022/10/29FinancialEngineeringQuestionsWhatistheprobabilitydistributionofthestockpriceattheendof 2years? ?years? ?years?

Dtyears?Takinglimitswehavedefinedacontinuousvariable,continuoustimeprocess2022/10/29FinancialEngineeringVariances&StandardDeviationsInMarkovprocesseschangesinsuccessiveperiodsoftimeareindependentThismeansthatvariancesareadditiveStandarddeviationsarenotadditive2022/10/29FinancialEngineeringVariances&StandardDeviations(continued)Inourexampleitiscorrecttosaythatthevarianceis100peryear.Itisstrictlynotcorrecttosaythatthestandarddeviationis10peryear.2022/10/29FinancialEngineeringAWienerProcess(BrownianMotion)WeconsideravariablezwhosevaluechangescontinuouslyThechangeinasmallintervaloftimeDtisDz

ThevariablefollowsaWienerprocessif 1. 2.ThevaluesofDzforany2different(non-overlapping)periodsoftimeareindependent2022/10/29FinancialEngineeringPropertiesofaWienerProcessMeanof[z(T)–

z(0)]is0Varianceof[z(T)–

z(0)]isT

Standarddeviationof[z(T)–

z(0)]is2022/10/29FinancialEngineeringTakingLimits...Whatdoesanexpressioninvolvingdzanddtmean?ItshouldbeinterpretedasmeaningthatthecorrespondingexpressioninvolvingDzandDtistrueinthelimitasDttendstozeroInthisrespect,stochasticcalculusisanalogoustoordinarycalculus

2022/10/29FinancialEngineeringGeneralizedWienerProcessesAWienerprocesshasadriftrate(ieaveragechangeperunittime)of0andavariancerateof1InageneralizedWienerprocessthedriftrate&thevarianceratecanbesetequaltoanychosen constants2022/10/29FinancialEngineeringGeneralizedWienerProcesses

(continued)

ThevariablexfollowsageneralizedWienerprocesswithadriftrateofa&avariancerateofb2ifdx=adt+bdz

or:x(t)=x0+at+bz(t)2022/10/29FinancialEngineeringGeneralizedWienerProcesses

(continued)MeanchangeinxintimeTisaTVarianceofchangeinxintimeTisb2TStandarddeviationofchangeinxintimeTis2022/10/29FinancialEngineeringTheExampleRevisitedAstockpricestartsat40&hasaprobabilitydistributionoff(40,10)attheendoftheyearIfweassumethestochasticprocessisMarkovwithnodriftthentheprocessisdS=10dzIfthestockpricewereexpectedtogrowby$8onaverageduringtheyear,sothattheyear-enddistributionisf(48,10),theprocessisdS=8dt+10dz2022/10/29FinancialEngineeringWhy?(1)It’stheonlywaytomakethevarianceof(xT-x0)dependonTandnotonthenumberofsteps.1.DividetimeupintondiscreteperiodsoflengthΔt,n=T/Δt.IneachperiodthevariablexeithermovesupordownbyanamountΔhwiththeprobabilitiesofpandqrespectively.2022/10/29FinancialEngineeringWhy?(2)2.thedistributionforthefuturevaluesofx:E(Δx)=(p-q)ΔhE[(Δx)2]=p(Δh)2+q(-Δh)2So,thevarianceofΔxis:E[(Δx)2]-[E(Δx)]2=[1-(p-q)2](Δh)2=4pq(Δh)23.Sincethesuccessivestepsoftherandomwalkareindependent,thecumulatedchange(xT-x0)isabinomialrandomwalkwithmean:n(p-q)Δh=t(p-q)Δh/Δtandvariance:n[1-(p-q)2](Δh)2=

4pqt(Δh)2/Δt2022/10/29FinancialEngineeringWhy?(3)WhenletΔtgotozero,wewouldlikethemeanandvarianceof(xT-x0)toremainunchanged,andtobeindependentoftheparticularchoiceofp,q,ΔhandΔt.Theonlywaytogetitistoset:

and

then2022/10/29FinancialEngineeringWhy?(4)WhenΔtgoestozero,thebinomialdistributionconvergestoanormaldistribution,withmeanandvariance

2022/10/29FinancialEngineeringSamplepath(a=0.2peryear,b=1.0peryear)Takingatimeintervalofonemonth,thencalculatingatrajectoryforxtusingtheequation:

Atrendof0.2peryearimpliesatrendof0.0167permonth.Astandarddeviationof1.0peryearimpliesavarianceof1.0peryear,andhenceavarianceof0.0833permonth,sothatthestandarddeviationinmonthlytermsis0.2887.SeeInvestmentunderuncertainty,p662022/10/29FinancialEngineeringForecastusinggeneralizedBrownianMotionGiventhevalueofx(t)forDec.1974,X1974,theforecastedvalueofxforatimeTmonthsbeyondDec.1974isgivenby:SeeInvestmentunderuncertainty,p67Inthelongrun,thetrendisthedominantdeterminantofBrownianMotion,wherasintheshortrun,thevolatilityoftheprocessdominates.2022/10/29FinancialEngineeringWhyaGeneralizedWienerProcessisnotAppropriateforStocksForastockpricewecanconjecturethatitsexpectedproportionalchangeinashortperiodoftimeremainsconstantnotitsexpectedabsolutechangeinashortperiodoftimeWecanalsoconjecturethatouruncertaintyastothesizeoffuturestockpricemovementsisproportionaltothelevelofthestockpriceThepriceofastockneverfallbelowzero.2022/10/29FinancialEngineering

ItoProcessInanItoprocessthedriftrateandthevarianceratearefunctionsoftimedx=a(x,t)dt+b(x,t)dz

or:ThediscretetimeequivalentisonlytrueinthelimitasDttendstozero2022/10/29FinancialEngineeringAnItoProcessforStockPrices

wheremistheexpectedreturnsisthevolatility.Thediscretetimeequivalentis2022/10/29FinancialEngineeringMonteCarloSimulationWecansamplerandompathsforthestockpricebysamplingvaluesforeSupposem=0.14,s=0.20,andDt=0.01,then2022/10/29FinancialEngineeringMonteCarloSimulation–OnePath

2022/10/29FinancialEngineeringIto’sLemmaIfweknowthestochasticprocessfollowedbyx,Ito’slemmatellsusthestochasticprocessfollowedbysomefunctionG(x,t)Sinceaderivativesecurityisafunctionofthepriceoftheunderlying&time,Ito’slemmaplaysanimportantpartintheanalysisofderivativesecurities2022/10/29FinancialEngineeringTaylorSeriesExpansionATaylor’sseriesexpansionofG(x,t)gives2022/10/29FinancialEngineeringIgnoringTermsofHigherOrderThanDt2022/10/29FinancialEngineeringSubstitutingforDx2022/10/29FinancialEngineeringThee2DtTerm2022/10/29FinancialEngi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論