2022年貴州省黔東南苗族侗族自治州東南州名校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2022年貴州省黔東南苗族侗族自治州東南州名校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2022年貴州省黔東南苗族侗族自治州東南州名校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2022年貴州省黔東南苗族侗族自治州東南州名校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2022年貴州省黔東南苗族侗族自治州東南州名校高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.2.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.83.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.4.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.45.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達(dá),則甲第一個到、丙第三個到的概率是()A. B. C. D.6.若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為87.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)()A.向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變B.向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變C.向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變D.向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變8.在中,,,,則邊上的高為()A. B.2 C. D.9.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.10.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.12.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)開_____.14.已知函數(shù),則函數(shù)的極大值為___________.15.正三棱柱的底面邊長為2,側(cè)棱長為,為中點(diǎn),則三棱錐的體積為________.16.已知集合,若,且,則實(shí)數(shù)所有的可能取值構(gòu)成的集合是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù),,且.(1)當(dāng)時,求函數(shù)的減區(qū)間;(2)求證:方程有兩個不相等的實(shí)數(shù)根;(3)若方程的兩個實(shí)數(shù)根是,試比較,與的大小,并說明理由.19.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當(dāng)越小時,該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;(ii)當(dāng)時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).20.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.21.(12分)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點(diǎn)Q,使得對任意的實(shí)數(shù)m,都有,并證明你的結(jié)論.22.(10分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當(dāng)時,要使恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.2、B【解析】

利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.3、C【解析】

根據(jù)題目中的基底定義求解.【詳解】因?yàn)椋?,,,,,所以能作為集合的基底,故選:C【點(diǎn)睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.5、D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點(diǎn)睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.6、D【解析】

由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進(jìn)而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點(diǎn)睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.7、A【解析】

由函數(shù)的最大值求出,根據(jù)周期求出,由五點(diǎn)畫法中的點(diǎn)坐標(biāo)求出,進(jìn)而求出的解析式,與對比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變)即可.故選:A【點(diǎn)睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.8、C【解析】

結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.9、D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)椋?,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.10、A【解析】

根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時,,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.11、A【解析】

是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點(diǎn)為,在軸左邊第一個零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點(diǎn)就是其圖象對稱中心的橫坐標(biāo).12、A【解析】

將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點(diǎn),從而可選出所在象限.【詳解】解:,所以所對應(yīng)的點(diǎn)為在第一象限.故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對應(yīng)的坐標(biāo).易錯點(diǎn)是誤把當(dāng)成進(jìn)行計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點(diǎn)睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.14、【解析】

對函數(shù)求導(dǎo),通過賦值,求得,再對函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點(diǎn)睛】本題考查函數(shù)極值的求解,難點(diǎn)是要通過賦值,求出未知量.15、【解析】

試題分析:因?yàn)檎庵牡酌孢呴L為,側(cè)棱長為為中點(diǎn),所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點(diǎn):幾何體的體積的計(jì)算.16、.【解析】

化簡集合,由,以及,即可求出結(jié)論.【詳解】集合,若,則的可能取值為,0,2,3,又因?yàn)椋詫?shí)數(shù)所有的可能取值構(gòu)成的集合是.故答案為:.【點(diǎn)睛】本題考查集合與元素的關(guān)系,理解題意是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】試題分析:先將問題“存在實(shí)數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實(shí)數(shù)使成立,等價于的最大值大于,因?yàn)椋煽挛鞑坏仁剑?,所以,?dāng)且僅當(dāng)時取“”,故常數(shù)的取值范圍是.考點(diǎn):柯西不等式即運(yùn)用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運(yùn)用.18、(1)(2)詳見解析(3)【解析】

試題分析:(1)當(dāng)時,,由得減區(qū)間;(2)因?yàn)?,所以,因?yàn)樗?,方程有兩個不相等的實(shí)數(shù)根;(3)因?yàn)?,,所以試題解析:(1)當(dāng)時,,由得減區(qū)間;(2)法1:,,,所以,方程有兩個不相等的實(shí)數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個不相等的實(shí)數(shù)根;(3)因?yàn)?,,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系19、(1)見解析,(2)(i)見解析(ii)時平均檢驗(yàn)次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進(jìn)而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當(dāng)且取最小值時,該方案最合理,對進(jìn)行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因?yàn)?,所以在上單調(diào)遞增,故越小,越小,即所需平均檢驗(yàn)次數(shù)越少,該方案越合理記當(dāng)且取最小值時,該方案最合理,因?yàn)?,,所以時平均檢驗(yàn)次數(shù)最少,約為次.【點(diǎn)睛】本題考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望,考查了分析問題、解決問題的能力,屬于中檔題.20、(1)(2)【解析】

(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點(diǎn)睛】本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比數(shù)列的前項(xiàng)和公式、裂項(xiàng)求和法,需熟記公式,屬于基礎(chǔ)題.21、(1);(2)存在,Q為線段中點(diǎn)【解析】

解法一:(1)作出平面與平面的交線,可證平面,計(jì)算,,得出,從而得出的大??;(2)證明平面,故而可得當(dāng)Q為線段的中點(diǎn)時.解法二,以為原點(diǎn),以為建立空間直角坐標(biāo)系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設(shè)上存在一定點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設(shè)與平面的公共點(diǎn)為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點(diǎn),,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當(dāng)Q為線段中點(diǎn)時,對于任意的實(shí)數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標(biāo)系,則,,所以,,,又由,,則為平面的一個法向量,設(shè)直線AP與平面所成角為,則,故當(dāng)時,直線AP與平面所成角為.(2)若在上存在一定點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為,則,,依題意,對于任意的實(shí)數(shù)要使,等價于,即,解得,即當(dāng)Q為線段中點(diǎn)時,對于任意的實(shí)數(shù),都有.【點(diǎn)睛】本題考查了線面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論