版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.332.若,則下列不等式不能成立的是()A. B. C. D.3.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.4.設(shè)集合,,則().A. B.C. D.5.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.6.已知復數(shù)滿足,則()A. B. C. D.7.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.8.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.9.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.10.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結(jié)論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.11.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.12.已知函數(shù),,則的極大值點為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在實數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.14.若,則__________.15.已知集合,,則__________.16.函數(shù)的單調(diào)增區(qū)間為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.18.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.19.(12分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.20.(12分)已知.(Ⅰ)當時,解不等式;(Ⅱ)若的最小值為1,求的最小值.21.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.2.B【解析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.3.A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.4.D【解析】
根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,5.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.6.A【解析】
根據(jù)復數(shù)的運算法則,可得,然后利用復數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數(shù)的運算,考驗計算,屬基礎(chǔ)題.7.D【解析】
根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎(chǔ)題.8.D【解析】
根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計算能力,屬于中檔題.9.C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.10.C【解析】
設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎(chǔ)題.11.D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.12.A【解析】
求出函數(shù)的導函數(shù),令導數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數(shù)求函數(shù)的極值點,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點,若兩函數(shù)在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題14.【解析】
因為,由二倍角公式得到,故得到.故答案為.15.【解析】
解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎(chǔ)題.16.【解析】
先求出導數(shù),再在定義域上考慮導數(shù)的符號為正時對應的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點睛】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,注意先考慮函數(shù)的定義域,再考慮導數(shù)在定義域上的符號,本題屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設(shè)點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【詳解】(Ⅰ)設(shè)點,,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【點睛】本題考查了參數(shù)方程,極坐標方程,弦長,意在考查學生的計算能力和轉(zhuǎn)化能力.18.【解析】
根據(jù),可解得,設(shè)為曲線任一點,在矩陣對應的變換作用下得到點,則點在曲線上,根據(jù)變換的定義寫出相應的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設(shè)為曲線任一點,則,又設(shè)在矩陣A變換作用得到點,則,即,所以即代入,得,所以曲線的方程為.【點睛】本題考查逆矩陣,矩陣與變換等,是基礎(chǔ)題.19.(1);(2)當時,在上是減函數(shù);當時,在上是增函數(shù);(3)證明見解析.【解析】
(1)當時,,求得其導函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導函數(shù),并得出導函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調(diào)性;(3)當時,,,由(2)得的單調(diào)區(qū)間,以當方程有兩個不相等的實數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),分析其導函數(shù)的正負得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數(shù),在上是增函數(shù);(3)當時,,,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數(shù)根,不妨設(shè),且有,,構(gòu)造函數(shù),則,當時,所以,在上單調(diào)遞減,且,,由,在上單調(diào)遞增,.所以.【點睛】本題考查運用導函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當?shù)暮瘮?shù),得出其導函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.20.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)當時,令,作出的圖像,結(jié)合圖像即可求解;(Ⅱ)結(jié)合絕對值三角不等式可得,再由“1”的妙用可拼湊為,結(jié)合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點橫坐標為2,由對稱性知,點橫坐標為﹣2,因此不等式的解集為.(Ⅱ)..取等號的條件為,即,聯(lián)立得因此的最小值為.【點睛】本題考查絕對值不等式、基本不等式,屬于中檔題21.(1)詳見解析;(2).【解析】
(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點建立空間直角坐標系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線分別為軸建立空間直角坐標系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯點是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現(xiàn)錯誤.22.(1)(2)【解析】
(1)根據(jù)拋物線的焦點求得橢圓的焦點,由此求得,結(jié)合橢圓離心率求得,進而求得,從而求得橢圓的標準方程,求得橢圓上頂點的坐標,由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點的縱坐標,由此求得的面積.(2)求得兩點的坐標,設(shè)出直線的方程,聯(lián)立直線的方程和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年私人房產(chǎn)買賣合同環(huán)保要求與執(zhí)行標準3篇
- 2025年度路演展示廳清潔維護服務租賃合同4篇
- 二零二五版水利工程開工合同范例2篇
- 2025年度多功能培訓學校教室租賃合同范本3篇
- 2025年度廚師行業(yè)人才引進與培養(yǎng)服務協(xié)議3篇
- 2025年度文化藝術(shù)品樣品展覽與上樣合作協(xié)議3篇
- 2024綜藝節(jié)目拍攝基地租賃合同
- 2025年物業(yè)保潔外包服務合同(含節(jié)能環(huán)保服務)3篇
- 2025年度智能電網(wǎng)建設(shè)采購戰(zhàn)略合作協(xié)議合同范本3篇
- 2025年消防給排水系統(tǒng)節(jié)能改造與優(yōu)化合同3篇
- 企業(yè)年會攝影服務合同
- 電商運營管理制度
- 二零二五年度一手房購房協(xié)議書(共有產(chǎn)權(quán)房購房協(xié)議)3篇
- 2025年上半年上半年重慶三峽融資擔保集團股份限公司招聘6人易考易錯模擬試題(共500題)試卷后附參考答案
- 城市公共交通運營協(xié)議
- 內(nèi)燃副司機晉升司機理論知識考試題及答案
- 2024北京東城初二(上)期末語文試卷及答案
- 2024設(shè)計院與職工勞動合同書樣本
- 2024年貴州公務員考試申論試題(B卷)
- 電工高級工練習題庫(附參考答案)
- 村里干零工協(xié)議書
評論
0/150
提交評論