人教版初中數(shù)學(xué)三角形知識(shí)點(diǎn)復(fù)習(xí)_第1頁
人教版初中數(shù)學(xué)三角形知識(shí)點(diǎn)復(fù)習(xí)_第2頁
人教版初中數(shù)學(xué)三角形知識(shí)點(diǎn)復(fù)習(xí)_第3頁
人教版初中數(shù)學(xué)三角形知識(shí)點(diǎn)復(fù)習(xí)_第4頁
人教版初中數(shù)學(xué)三角形知識(shí)點(diǎn)復(fù)習(xí)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版初中數(shù)學(xué)三角形知識(shí)點(diǎn)復(fù)習(xí)一、選擇題1.如圖,在□ABCD中,延長CD到E,使DE=CD,連接BE交AD于點(diǎn)F,交AC于點(diǎn)G.下列結(jié)論中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正確的有()【解析】C.3【解析】C.3個(gè)D.4個(gè)【分析】由AAS證明△ABF9ADEF,得出對(duì)應(yīng)邊相等AF=DF,BF=EF,即可得出結(jié)論,對(duì)于①②④不一定正確.【詳解】解:???四邊形ABCD是平行四邊形,.??AB〃CD,AB=CD,即卩AB〃CE,.\ZABF=ZE,VDE=CD,.??AB=DE,在△ABF和ADEF中,'ZABF=ZE<ZAFB=ZDFE,AB=DE.?.△ABF9ADEF(AAS),.??AF=DF,BF=EF;可得③⑤正確,故選:B.【點(diǎn)睛】此題考查平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、平行線的性質(zhì);熟練掌握平行四邊形的性質(zhì),證明三角形全等是解題的關(guān)鍵.2.下列長度的三條線段能組成三角形的是()A.2,2,5A.2,2,5C.3,4,8D.4,5,6【答案】D【解析】【分析】三角形的任何一邊大于其他兩邊之差,小于兩邊之和,滿足此關(guān)系的可組成三角形,其實(shí)只要最小兩邊的和大于最大邊就可判斷前面的三邊關(guān)系成立.【詳解】根據(jù)三角形三邊關(guān)系可知,三角形兩邊之和大于第三邊.A、2+2=4V5,此選項(xiàng)錯(cuò)誤;B、1+13<3,此選項(xiàng)錯(cuò)誤;C、3+4<8,此選項(xiàng)錯(cuò)誤;D、4+5=9>6,能組成三角形,此選項(xiàng)正確.故選:D.【點(diǎn)睛】此題考查三角形三邊關(guān)系,解題關(guān)鍵在于掌握三角形兩邊之和大于第三邊.即:兩條較短的邊的和小于最長的邊,只要滿足這一條就是滿足三邊關(guān)系.3.如圖,在AABC中,ZB=33。,將AABC沿直線m翻折,點(diǎn)b落在點(diǎn)d的位置,則【答案】D56。C【答案】D56。C.65°D.66°【解析】【分析】由折疊的性質(zhì)得到ZD=ZB,再利用外角性質(zhì)即可求出所求角的度數(shù).【詳解】ZD=ZD=ZB=33°,根據(jù)外角性質(zhì)得:Z1=Z3+ZB,Z3=Z2+ZD,.\Z1=Z2+ZD+ZB=Z2+2ZB=Z2+66°,???Z1-Z2=66°.故選:D.【點(diǎn)睛】此題考查了翻折變換以及三角形外角性質(zhì)的運(yùn)用,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.4.如圖11-3-1,在四邊形ABCD中,ZA=ZB=ZC,點(diǎn)E在邊AB上,ZAED=60°,則一定有()11A-ZADE=20°B-ZADE=30°C-ZADE=2ZADCD-ZADE=3ZADC【答案】D【解析】【分析】【詳解】設(shè)ZADE=x,ZADC=y,由題意可得,ZADE+ZAED+ZA=180°,ZA+ZB+ZC+ZADC=360°,即x+60+ZA=180①,3ZA+y=360②,由①x3-②可得3x-y=0,11所以x3y,即ZADE=3ZADC.考點(diǎn):三角形的內(nèi)角和定理;四邊形內(nèi)角和定理.5.將一根24cm的筷子,置于底面直徑為15cm,高8cm的裝滿水的無蓋圓柱形水杯中,設(shè)筷子浸沒在杯子里面的長度為hcm,則h的取值范圍是()D.7cm<h<16cmA.h<15cmB.h>8cmC.D.7cm<h<16cm【答案】C【解析】【分析】筷子浸沒在水中的最短距離為水杯高度,最長距離如下圖,是筷子斜臥于杯中時(shí),利用勾股定理可求得.【詳解】當(dāng)筷子筆直豎立在杯中時(shí),筷子浸沒水中距離最短,為杯高=8cmAD是筷子,AB長是杯子直徑,BC是杯子高,當(dāng)筷子如下圖斜臥于杯中時(shí),浸沒在水中的距離最長1/IAB由題意得:AB=15cm,BC=8cm,△ABC是直角三角形???在RtAABC中,根據(jù)勾股定理,AC=17cm.*.8cm<h<17cm故選:C【點(diǎn)睛】本題考查勾股定理在實(shí)際生活中的應(yīng)用,解題關(guān)鍵是將題干中生活實(shí)例抽象成數(shù)學(xué)模型,然后再利用相關(guān)知識(shí)求解.上CAB=上CAB=60。,按以下步驟作圖:1分別以A,B為圓心,以大于2AB的長為半徑畫弧,兩弧分別相交于點(diǎn)P和Q.作直線PQ交AB于點(diǎn)D,交BC于點(diǎn)E,連接AE.若CE=4,則AE的值為()A.B.4\;2C.4朽D.8【答案】D【解析】【分析】33根據(jù)垂直平分線的作法得出PQ是AB的垂直平分線,進(jìn)而得出ZEAB=ZCAE=30°,即可得出AE的長.【詳解】由題意可得出:PQ是AB的垂直平分線,.??AE=BE,???在△ABC中,ZC=90°,ZCAB=60°,.\ZCBA=30°,.\ZEAB=ZCAE=30°,1.??CE=AE=4,2.??AE=8.故選D.【點(diǎn)睛】此題主要考查了垂直平分線的性質(zhì)以及直角三角形中,30°所對(duì)直角邊等于斜邊的一半,根據(jù)已知得出ZEAB=ZCAE=30°是解題關(guān)鍵.如圖,"BCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分BAD交BC于點(diǎn)E,且ZADC=60°,1AB=BC,連接OE.下列結(jié)論:①AE=CE;②S^abc=AB^AC;③S^abe=2S^aoe;④OE=4BC,成立的個(gè)數(shù)有()=4BC,成立的個(gè)數(shù)有()C.3個(gè)D.4【答案】C【解析】【分析】利用平行四邊形的性質(zhì)可得ZABC=ZADC=60°,ZBAD=120°,利用角平分線的性質(zhì)證明△ABE是等邊三角形,然后推出AE=BE=2BC,再結(jié)合等腰三角形的性質(zhì):等邊對(duì)等角、三線合一進(jìn)行推理即可.【詳解】???四邊形ABCD是平行四邊形,4-R.??ZABC=ZADC=60°,ZBAD=120°,TAE平分ZBAD,.\ZBAE=ZEAD=60°.△ABE是等邊三角形,.??AE=AB=BE,ZAEB=60°,1TAB=BC,21.??AE=BE=BC,2???AE=CE,故①正確;.\ZEAC=ZACE=30°.??ZBAC=90°,???Saabc=2AB?AC,故②錯(cuò)誤;TBE=EC,E為BC中點(diǎn),O為AC中點(diǎn),SAABE=SAACE=2S^AOE,故③正確;???四邊形ABCD是平行四邊形,.AC=CO,AE=CE,???EO丄AC,VZACE=30°,1???EO==EC,21?/EC=AB,2OE=4BC,故④正確;故正確的個(gè)數(shù)為3個(gè),故選:C.【點(diǎn)睛】此題考查平行四邊形的性質(zhì),等邊三角形的判定與性質(zhì).注意證得△ABE是等邊三角形是解題關(guān)鍵.如圖,趙爽弦圖是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形兩條直角邊長分別為a和b.若ab8,大正方形的邊長為5,則小正方形的邊長為()B.2C.B.2C.3D.4【答案】C【解析】【分析】由題意可知:中間小正方形的邊長為a-b,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長.【詳解】解:由題意可知:中間小正方形的邊長為:a-b,11?.?每一個(gè)直角三角形的面積為:2ab=-x8=4,1?°?根據(jù)4x—ab+(a-b)2=52=25,得4x4+(a-b)2=25,(a-b)2=25-16=9,a-b=3(舍負(fù)),故選:C.【點(diǎn)睛】本題考查勾股定理,解題的關(guān)鍵是熟練運(yùn)用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作ZBAD的平分線AG交BC于點(diǎn)E,若TOC\o"1-5"\h\zBF=6,AB=5,則AE的長為()BECA.4B.8C.6D.10【答案】B【解析】【分析】【詳解】解:設(shè)AG與BF交點(diǎn)為O,TAB=AF,AG平分ZBAD,AO=AO,?:可證△ABO^AAFO,.:BO=FO=3,ZAOB=ZAOF=90°,AB=5,AAO=4,VAF#BE,A可證△AOF^AEOB,AO=EO,?:AE=2AO=8,故選B.

【點(diǎn)睛】本題考查角平分線的作圖原理和平行四邊形的性質(zhì).10.如圖,在△ABC中,AC=BC,ZACB=90°,點(diǎn)D在BC上,BD=3,DC=1,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為()A.4B.5C.6D.7【答案】B【解析】試題解析:過點(diǎn)C作CO丄AB于0,延長CO到Cz,使0Cz=0C,連接DC,交AB于P,連C.ZB=C.ZB=ZEB.ZBAD=ZEAC此時(shí)DP+CP=DP+PC'=DC'的值最小.?.?DC=1,BC=4,?:BD=3,連接BC',由對(duì)稱性可知ZC'BE=ZCBE=45°,.??ZCBC'=90°,.??BC'丄BC,ZBCC'=ZBC'C=45°,.?.BC=BC'=4,根據(jù)勾股定理可得DC=\;BC'2+BD2=占2+42=5.故選B.11.如圖,已知AB=AE,AC=AD,下列條件中不能判定△ABC^^AED的是(D.ZBAC=ZEAD【答案】C【解析】解:A.TAB=AE,AC=AD,BC=ED,?'.△ABC^^AED(SSS),故A不符合題意;VZBAD=ZEAC,AZBAC=ZEAD.VAB=AE,ZBAC=ZEAD,AC=AD,:.△ABC^^AED(SAS),故B不符合題意;不能判定△ABC^^AED,故C符合題意.TAB=AE,ZBAC=ZEAD,AC=AD,?'△ABC^^AED(SAS),故D不符合題意.故選C.12.如圖,已知A,D,B,E在同一條直線上,且AD=BE,AC=DF補(bǔ)充下列其中一個(gè)條件后,不一定能得到△ABC9ADEF的是()A.BC=EFB.AC//DFC.ZC=ZFD.ZBAC=ZEDF【答案】C【解析】【分析】根據(jù)全等三角形的判定方法逐項(xiàng)判斷即可.【詳解】VBE=CF,.??BE+EC=EC+CF,即BC=EF,且AC=DF,??.當(dāng)BC=EF時(shí),滿足SSS,可以判定厶ABC^^DEF;當(dāng)AC//DF時(shí),ZA=ZEDF,滿足SAS,可以判定厶ABC^^DEF;當(dāng)ZC=ZF時(shí),為SSA,不能判定厶ABC^^DEF;當(dāng)ZBAC=ZEDF時(shí),滿足SAS,可以判定厶ABC^^DEF,故選C.【點(diǎn)睛】本題主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解題的關(guān)鍵,即SSS、SAS、ASA、AAS和HL.13.如圖,在AABC中,AB的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E.AABC的周長為19,AACE的周長為13,則AB的長為()DA.3B.6c.12D.16【答案】B【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】VAB的垂直平分線交AB于點(diǎn)D,.??AE=BE,?.?△ACE的周長=AC+AE+CE=AC+BC=13,△ABC的周長=AC+BC+AB=19,.??AB=AABC的周長-AACE的周長=19-13=6,故答案為:B.【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì):垂直平分線垂直且平分其所在線段;垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等.14.下列幾組線段中,能組成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.2,5,5【答案】C【解析】【分析】要驗(yàn)證是否可以組成直角三角形,根據(jù)勾股定理的逆定理,只要驗(yàn)證三邊的關(guān)系是否滿足兩邊平方是否等于第三邊的平方即可,分別驗(yàn)證四個(gè)選項(xiàng)即可得到答案.【詳解】22+32豐42,故不能組成直角三角形;32+42豐62,故不能組成直角三角形;52+122=132,故可以組成直角三角形;22+52豐52,故不能組成直角三角形;故選C.【點(diǎn)睛】本題主要考查了勾股定理的逆定理(如果三角形兩邊的平方等于第三邊的平方,那么這個(gè)三角形是直角三角形),掌握勾股定理的逆定理是解題的關(guān)鍵.15.如圖,^ABC中,AB=AC=5,AE平分ABAC交BC于點(diǎn)E,點(diǎn)D為AB的中點(diǎn),連接DE,則DE的長為()A.2B.2.5C.3D.打【答案】B【解析】【分析】根據(jù)等腰三角形三線合一可得AE丄BC,再根據(jù)直角三角形斜邊上的中線是斜邊的一半即可求得DE的長度.【詳解】解:AB=AC=5,AE平分ABAC,??.AE丄BC,又??點(diǎn)D為AB的中點(diǎn),.??DE=1AB=2.5,2故選:B.【點(diǎn)睛】本題考查等腰三角形三線合一和直角三角形斜邊上的中線.熟練掌握相關(guān)定理,并能正確識(shí)圖,得出線段之間的關(guān)系是解題關(guān)鍵.16.如圖,AB是00的直徑,AC是00的切線,連接0C交00于點(diǎn)D,連接BD,ZC=40°.則ZABD的度數(shù)是()A.30°B.25°C.20°D.15°【答案】B【解析】試題分析:TAC為切線.\ZOAC=90°VZC=40°.\ZAOC=50°VOB=OD?\ZABD=ZODBVZABD+ZODB=ZAOC=50°AZABD=ZODB=25°.考點(diǎn):圓的基本性質(zhì).17.如果把直角三角形的兩條直角邊長同時(shí)擴(kuò)大到原來的2倍,那么斜邊長擴(kuò)大到原來的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】設(shè)原直角三角形的三邊長分別是》二「,且丁-八二廠,則擴(kuò)大后的三角形的斜邊長為.二一二l-廠二二,即斜邊長擴(kuò)大到原來的2倍,故選B.①ZC=ZB;@ZD=ZE;③ZEAD=ZBAC;@ZB=ZE;其中錯(cuò)誤的是()A.①②B.②③C.③④D.只有④【答案】D【解析】【分析】【詳解】解:因?yàn)锳E=AD,AB=AC,EC=DB;所以△ABD^AACE(SSS);所以ZC=ZB,ZD=ZE,ZEAC=ZDAB;所以ZEAC-ZDAC=ZDAB-ZDAC;得ZEAD=ZCAB.所以錯(cuò)誤的結(jié)論是④,故選D.【點(diǎn)睛】此題考查了全等三角形的判定方法,根據(jù)已知條件利用SSS證明兩個(gè)三角形全等,還考查了全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等,全等三角形的對(duì)應(yīng)邊相等.

19.如圖,RtAABC中,ZC=90°,ZABC的平分線BD交AC于D,若AD=5cm,CD=3cm,則點(diǎn)D到AB的距離DE是()A.5cmB.4cmC.3cmD.2cm【答案】C【解析】???點(diǎn)D到AB的距離是DE,.?.DE丄AB,BD平分ZAB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論