




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象如圖所示,若點A和B在此函數(shù)圖象上,則與的大小關系是()A. B. C. D.無法確定2.如圖,在Rt△ABC中,CD是斜邊AB上的中線,已知AC=3,CD=2,則cosA的值為()A. B. C. D.3.如圖,等邊△ABC的邊長為6,P為BC上一點,BP=2,D為AC上一點,若∠APD=60°,則CD的長為()A.2 B.43 C.234.如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為().A.60° B.75° C.85° D.90°5.在某中學的迎國慶聯(lián)歡會上有一個小嘉賓抽獎的環(huán)節(jié),主持人把分別寫有“我”、“愛”、“祖”、“國”四個字的四張卡片分別裝入四個外形相同的小盒子并密封起來,由主持人隨機地弄亂這四個盒子的順序,然后請出抽獎的小嘉賓,讓他在四個小盒子的外邊也分別寫上“我”、“愛”、“祖”、“國”四個字,最后由主持人打開小盒子取出卡片,如果每一個盒子上面寫的字和里面小卡片上面寫的字都不相同就算失敗,其余的情況就算中獎,那么小嘉賓中獎的概率為()A. B. C. D.6.如圖,在菱形中,,,,則的值是()A. B.2 C. D.7.用配方法解一元二次方程時,此方程可變形為()A. B. C. D.8.下列運算正確的是()A. B. C. D.9.下列說法中不正確的是()A.四邊相等的四邊形是菱形 B.對角線垂直的平行四邊形是菱形C.菱形的對角線互相垂直且相等 D.菱形的鄰邊相等10.下列方程中是關于x的一元二次方程的是()A.x2+=0 B.(x-1)2=(x+3)(x-2)+1C.x=x2 D.ax2+bx+c=011.如圖,水平地面上有一面積為30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.將這個扇形向右滾動(無滑動)至點B剛好接觸地面為止,則在這個滾動過程中,點O移動的距離是()A.cm B.cm C.cm D.30cm12.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)二、填空題(每題4分,共24分)13.請寫出一個開口向下,且與y軸的交點坐標為(0,4)的拋物線的表達式_____.14.如圖,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.過點D作DG∥BE,交BC于點G,連接FG交BD于點O.若AB=6,AD=8,則DG的長為_____.15.函數(shù)是關于反比例函數(shù),則它的圖象不經過______的象限.16.有五張分別印有圓、等腰三角形、矩形、菱形、正方形圖案的卡片(卡片中除圖案不同外,其余均相同),現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到有中心對稱圖案的卡片的概率是________.17.在同一時刻,身高1.6米的小強在陽光下的影長為0.8米,一棵大樹的影長為4.8米,則樹的高度為.18.如圖,把繞著點順時針方向旋轉角度(),得到,若,,三點在同一條直線上,,則的度數(shù)是___________.三、解答題(共78分)19.(8分)如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.(1)如圖1,求△BCD的面積;(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當△CDF的面積與△BEF的面積相等時,求點E和點P的坐標.20.(8分)如圖,在矩形ABCD中,AB=3,AD=6,點E在AD邊上,且AE=4,EF⊥BE交CD于點F.(1)求證:△ABE∽△DEF;(2)求EF的長.21.(8分)如圖,在邊長為1的正方形網格中,△ABC的頂點均在格點上.(1)畫出△ABC繞點O順時針旋轉90°后的△A′B′C′.(2)求點B繞點O旋轉到點B′的路徑長(結果保留π).22.(10分)已知y是x的反比例函數(shù),并且當x=2時,y=6.(1)求y關于x的函數(shù)解析式;(2)當x=時,y=______.23.(10分)已知關于x的方程(1)求證:方程總有兩個實數(shù)根(2)若方程有一個小于1的正根,求實數(shù)k的取值范圍24.(10分)如圖,直線與雙曲線在第一象限內交于兩點,已知.求的值及直線的解析式;根據函數(shù)圖象,直接寫出不等式的解集.25.(12分)某商店經營家居收納盒,已知成批購進時的單價是20元.調查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每個收納盒售價不能高于40元.設每個收納盒的銷售單價上漲了元時(為正整數(shù)),月銷售利潤為元.(1)求與的函數(shù)關系式.(2)每個收納盒的售價定為多少元時,月銷售利潤恰為2520元?(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?26.已知關于x的一元二次方程x1=1(1-m)x-m1有兩個實數(shù)根為x1,x1.(1)求m的取值范圍;(1)設y=x1+x1,求當m為何值時,y有最小值.
參考答案一、選擇題(每題4分,共48分)1、A【分析】由圖象可知拋物線的對稱軸為直線,所以設點A關于對稱軸對稱的點為點C,如圖,此時點C坐標為(-4,y1),點B與點C都在對稱軸左邊,從而利用二次函數(shù)的增減性判斷即可.【詳解】解:∵拋物線的對稱軸為直線,∴設點A關于對稱軸對稱的點為點C,∴點C坐標為(-4,y1),此時點A、B、C的大體位置如圖所示,∵當時,y隨著x的增大而減小,,∴.故選:A.【點睛】本題主要考查了二次函數(shù)的圖象與性質,屬于基本題型,熟練掌握二次函數(shù)的性質是解題關鍵.2、A【分析】利用直角三角形的斜邊中線與斜邊的關系,先求出AB,再利用直角三角形的邊角關系計算cosA.【詳解】解:∵CD是Rt△ABC斜邊AB上的中線,
∴AB=2CD=4,∴cosA==.故選A.【點睛】本題考查了直角三角形斜邊的中線與斜邊的關系、銳角三角函數(shù).掌握直角三角形斜邊的中線與斜邊的關系是解決本題的關鍵.在直角三角形中,斜邊的中線等于斜邊的一半.3、B【解析】由等邊三角形的性質結合條件可證明△ABP∽△PCD,由相似三角形的性質可求得CD.【詳解】∵△ABC為等邊三角形,∴∠B=∠C=60又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BPCD∵AB=BC=6,BP=2,∴PC=4,∴2CD∴CD=4故選:B.【點睛】考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.4、C【解析】試題分析:根據旋轉的性質知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數(shù)為85°.故選C.考點:旋轉的性質.5、B【分析】得出總的情況數(shù)和失敗的情況數(shù),根據概率公式計算出失敗率,從而得出中獎率.【詳解】共有4×4=16種情況,失敗的情況占3+2+1=6種,失敗率為,中獎率為.故選:B.【點睛】本題考查了利用概率公式求概率.正確得出失敗情況的總數(shù)是解答本題的關鍵.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、B【分析】由菱形的性質得AD=AB,由,求出AD的長度,利用勾股定理求出DE,即可求出的值.【詳解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故選:B.【點睛】本題考查了三角函數(shù),菱形的性質,以及勾股定理,解題的關鍵是根據三角函數(shù)值正確求出菱形的邊長,然后進行計算即可.7、D【解析】試題解析:故選D.8、D【分析】按照有理數(shù)、乘方、冪、二次根式的運算規(guī)律進行解答即可.【詳解】解:A.,故A選項錯誤;B.,故B選項錯誤;C.,故C選項錯誤;D.,故D選項正確;故答案為D.【點睛】本題考查了有理數(shù)、乘方、冪、二次根式的運算法則,掌握響應的運算法則是解答本題的關鍵.9、C【分析】根據菱形的判定與性質即可得出結論.【詳解】解:A.四邊相等的四邊形是菱形;正確;
B.對角線垂直的平行四邊形是菱形;正確;
C.菱形的對角線互相垂直且相等;不正確;
D.菱形的鄰邊相等;正確;
故選C.【點睛】本題考查了菱形的判定與性質以及平行四邊形的性質;熟記菱形的性質和判定方法是解題的關鍵.10、C【詳解】A.x2+=0,是分式方程,故錯誤;B.(x-1)2=(x+3)(x-2)+1經過整理后為:3x-6=0,是一元一次方程,故錯誤;C.x=x2,是一元二次方程,故正確;D.當a=0時,ax2+bx+c=0不是一元二次方程,故錯誤,故選C.11、A【解析】如下圖,在灰色扇形OAB向右無滑動滾動過程中,點O移動的距離等于線段A1B1的長度,而A1B1的長度等于灰色扇形OAB中弧的長度,∵S扇形=,OA=6,∴(cm),即點O移動的距離等于:cm.故選A.點睛:在扇形沿直線無滑動滾動的過程中,由于圓心到圓上各點的距離都等于半徑,所以此時圓心作的是平移運動,其平移的距離就等于扇形沿直線滾動的路程.12、A【詳解】∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.二、填空題(每題4分,共24分)13、y=﹣x2+4.【解析】試題解析:開口向下,則y軸的交點坐標為這個拋物線可以是故答案為14、【解析】根據折疊的性質求出四邊形BFDG是菱形,假設DF=BF=x,∴AF=AD﹣DF=8﹣x,根據在直角△ABF中,AB2+AF2=BF2,即可求解.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四邊形BFDG是平行四邊形,∵折疊,∴∠DBC=∠DBF,故∠ADB=∠DBF∴DF=BF,∴四邊形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假設DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即DG=BF=,故答案為:【點睛】此題主要考查矩形的折疊性質,解題的關鍵是熟知菱形的判定與性質及勾股定理的應用.15、第一、三象限【解析】試題解析:函數(shù)是關于的反比例函數(shù),解得:比例系數(shù)它的圖象在第二、四象限,不經過第一、三象限.故答案為第一、三象限.16、【詳解】∵圓、矩形、菱形、正方形是中心對稱圖案,∴抽到有中心對稱圖案的卡片的概率是,故答案為.17、9.6【解析】試題分析:設樹的高度為x米,根據在同一時刻物高與影長成比例,即可列出比例式求解.設樹的高度為x米,由題意得解得則樹的高度為9.6米.考點:本題考查的是比例式的應用點評:解答本題的關鍵是讀懂題意,準確理解在同一時刻物高與影長成比例,正確列出比例式.18、【分析】首先根據鄰補角定義求出∠BCC′=180°-∠BCB′=134°,再根據旋轉的性質得出∠BCA=∠C′,AC=AC′,根據等邊對等角進一步可得出∠BCA=∠ACC′=∠C′,再利用三角形內角和求出∠CAC′的度數(shù),從而得出α的度數(shù)..【詳解】解:∵B,C,C′三點在同一條直線上,∴∠BCC′=180°-∠BCB′=134°,
又根據旋轉的性質可得,∠CAC′=∠BAB′=α,∠BCA=∠C′,AC=AC′,∴∠ACC′=∠C′,∴∠BCA=∠ACC′=∠BCC′=67°=∠C′,
∴∠CAC′=180°-∠ACC′-∠C′=46°,
∴α=46°.
故答案為:46°.【點睛】本題考查了旋轉的性質:①對應點到旋轉中心的距離相等;②對應點與旋轉中心所連線段的夾角等于旋轉角;③旋轉前、后的圖形全等.同時也考查了等腰三角形的性質,三角形的內角和以及鄰補角的定義.三、解答題(共78分)19、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分別求出點C,頂點D,點A,B的坐標,如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,證明△BCD是直角三角形,即可由三角形的面積公式求出其面積;(2)先求出直線BD的解析式,設P(a,a2﹣2a﹣3),用含a的代數(shù)式表示出直線PC的解析式,聯(lián)立兩解析式求出含a的代數(shù)式的點F的坐標,過點C作x軸的平行線,交BD于點H,則yH=﹣3,由△CDF與△BEF的面積相等,列出方程,求出a的值,即可寫出E,P的坐標.【詳解】(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3,∴C(0,﹣3),當x=﹣=1時,y=﹣4,∴頂點D(1,﹣4),當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC?BC=×3=3;(2)設直線BD的解析式為y=kx+b,將B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,設P(a,a2﹣2a﹣3),直線PC的解析式為y=mx﹣3,將P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,當y=0時,x=,∴E(,0),聯(lián)立,解得,,∴F(,),如圖2,過點C作x軸的平行線,交BD于點H,則yH=﹣3,∴H(,﹣3),∴S△CDF=CH?(yF﹣yD),S△BEF=BE?(﹣yF),∴當△CDF與△BEF的面積相等時,CH?(yF﹣yD)=BE?(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【點睛】此題主要考查二次函數(shù)與幾何綜合,解題的關鍵是熟知二次函數(shù)的圖像與性質、一次函數(shù)的性質及三角形面積的求解.20、(1)見解析;(2).【分析】(1)根據矩形的性質可得∠A=∠D=90°,再根據同角的余角相等求出∠1=∠3,然后利用兩角對應相等,兩三角形相似證明;
(2)利用勾股定理列式求出BE,再求出DE,然后根據相似三角形對應邊成比例列式求解即可.【詳解】(1)證明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2+∠3=180°-90°=90°,
∴∠1=∠3,
又∵∠A=∠D=90°,
∴△ABE∽△DEF;
(2)∵AB=3,AE=4,
∴BE==5,
∵AD=6,AE=4,
∴DE=AD-AE=6-4=2,
∵△ABE∽△DEF,
∴,即,
解得EF=.【點睛】本題考查了相似三角形的判定與性質,矩形的性質,利用同角的余角相等求出相等的銳角是證明三角形相似的關鍵.21、(1)畫圖見解析;(2)點B繞點O旋轉到點B′的路徑長為.【分析】(1)利用網格特點和旋轉的性質畫出點A、B、C的對應點A′、B′、C′,從而得到△A′B′C′;(2)先計算出OB的長,然后根據弧長公式計算點B繞點O旋轉到點B′的路徑長.【詳解】(1)如圖,△A′B′C′為所作;(2)OB==3,點B繞點O旋轉到點B′的路徑長==π.【點睛】本題考查作圖﹣旋轉變換和旋轉的性質,解題的關鍵是掌握旋轉的性質.22、(1);(2)-8【分析】(1)設,將x=2,y=1代入求解即可;(2)將x=代入反比例函數(shù)解析式求出y值.【詳解】解:(1)設∵當x=2時,y=1.∴.∴.∴(2)將x=代入得:所以.【點睛】本題考查了反比例函數(shù)的解析式,熟練掌握求反比例函數(shù)解析式的方法是解題關鍵.23、(1)證明見解析;(2)【分析】(1)證出根的判別式即可完成;(2)將k視為數(shù),求出方程的兩個根,即可求出k的取值范圍.【詳解】(1)證明:∴方程總有兩個實數(shù)根(2)∴∴∵方程有一個小于1的正根∴∴【點睛】本題考查一元二次方程根的判別式與方程的根之間的關系,熟練掌握相關知識點是解題關鍵.24、(1),;(2)或.【分析】⑴將點A(1,m)B(2,1)代入y2得出k2,m;再將A,B坐標代入y1中,求出即可;⑵直接根據函數(shù)圖像寫出答案即可.【詳解】解:點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京安全生產試題及答案
- 機械制造企業(yè)服務化轉型數(shù)字化轉型與智能化升級報告001
- 如何培訓企業(yè)直播課件
- 安全運輸試題及答案
- 職業(yè)技能培訓在農村公共文化服務體系建設中的應用報告
- 2025年工業(yè)污染場地修復技術方案評估與成本效益分析報告
- 電器火災消防培訓課件
- 安全警示活動試題及答案
- 安全核查試題及答案
- 2025年線下演出市場演出市場細分領域市場研究預測研究報告
- 青花瓷中國風ppt
- 安全生產普法宣傳課件
- 22104銅及銅合金焊接施工工藝標準修改稿
- DB43-T 1991-2021油茶低產林改造技術規(guī)程
- 醫(yī)療器械包裝微生物屏障性能測試方法探討
- CSC-2000變電站自動監(jiān)控系統(tǒng)使用說明書
- 柬埔寨各職能部門
- 項目管理之總師項目管理辦法
- MES七大功能-MES項目解決方案
- TAPPI標準的代碼和內容
- 海思芯片HTOL老化測試技術規(guī)范
評論
0/150
提交評論