




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在中,,若,,則與的比是()A. B. C. D.2.一元二次方程的根的情況為()A.沒有實數(shù)根B.只有一個實數(shù)根C.有兩個不相等的實數(shù)根D.有兩個相等的實數(shù)根3.觀察下列等式:①②③④…請根據(jù)上述規(guī)律判斷下列等式正確的是()A. B.C. D.4.在中,是邊上的點,,則的長為()A. B. C. D.5.如圖,△ABC是⊙O的內(nèi)接三角形,∠A=55°,則∠OCB為()A.35° B.45° C.55° D.65°6.在平面直角坐標系中,二次函數(shù)的圖像向右平移2個單位后的函數(shù)為()A. B.C. D.7.下列方程中,為一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..8.如圖,正△ABC的邊長為4,點P為BC邊上的任意一點(不與點B、C重合),且∠APD=60°,PD交AB于點D.設BP=x,BD=y,則y關于x的函數(shù)圖象大致是()A.A B.B C.C D.D9.正六邊形的周長為12,則它的面積為()A. B. C. D.10.如圖,AD是的高,AE是外接圓的直徑,圓心為點O,且AC=5,DC=3,,則AE等于()A. B. C. D.5二、填空題(每小題3分,共24分)11.計算:=_________.12.如圖,矩形中,,點在邊上,且,的延長線與的延長線相交于點,若,則______.13.點P(2,﹣1)關于原點的對稱點坐標為(﹣2,m),則m=_____.14.已知中,,,,,垂足為點,以點為圓心作,使得點在外,且點在內(nèi),設的半徑為,那么的取值范圍是______.15.如圖,在中,,若,則的值為_________16.已知反比例函數(shù),當時,隨的增大而增大,則的取值范圍為_______.17.在Rt△ABC中,AC:BC=1:2,則sinB=______.18.從0,1,2,3,4中任取兩個不同的數(shù),其乘積為0的概率是___________.三、解答題(共66分)19.(10分)如果一條拋物線與坐標軸有三個交點.那么以這三個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)命題“任意拋物線都有拋物線三角形”是___________(填“真”或“假”)命題;(2)若拋物線解析式為,求其“拋物線三角形”的面積.20.(6分)如圖,在平面直角坐標系中,一次函數(shù)的圖像與軸交于點.二次函數(shù)的圖像經(jīng)過點,與軸交于點,與一次函數(shù)的圖像交于另一點.(1)求二次函數(shù)的表達式;(2)當時,直接寫出的取值范圍;(3)平移,使點的對應點落在二次函數(shù)第四象限的圖像上,點的對應點落在直線上,求此時點的坐標.21.(6分)在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.(1).從A、D、E、F四點中任意取一點,以所取的這一點及B、C為頂點三角形,則所畫三角形是等腰三角形的概率是;(2).從A、D、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).22.(8分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應的函數(shù)表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內(nèi),A、N是位于直線BM同側的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.23.(8分)(1)解方程:x(x﹣3)=x﹣3;(2)用配方法解方程:x2﹣10x+6=024.(8分)如圖1,已知點A(a,0),B(0,b),且a、b滿足+(a+b+3)2=0,平等四邊形ABCD的邊AD與y軸交于點E,且E為AD中點,雙曲線y=經(jīng)過C、D兩點.(1)a=,b=;(2)求D點的坐標;(3)點P在雙曲線y=上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點Q的坐標;(4)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當T在AF上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.25.(10分)已知二次函數(shù)的圖象頂點是,且經(jīng)過,求這個二次函數(shù)的表達式.26.(10分)如圖,直線與雙曲線在第一象限內(nèi)交于兩點,已知.(1)求的值及直線的解析式.(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.(3)設點是線段上的一個動點,過點作軸于點是軸上一點,當?shù)拿娣e為時,請直接寫出此時點的坐標.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)平行即可證出△ADE∽△ABC,然后根據(jù)相似三角形的面積比等于相似比的平方,即可得出結論.【詳解】解:∵∴△ADE∽△ABC∴故選D.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握利用平行判定兩個三角形相似和相似三角形的面積比等于相似比的平方是解決此題的關鍵.2、A【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=4﹣4×5=﹣16<1.故選:A.【點睛】本題考查了一元二次方程根的判別式,解答本題的關鍵是熟練掌握一元二次方程根的判別式.3、C【分析】根據(jù)題目中各個式子的變化規(guī)律,可以判斷各個選項中的等式是否成立,從而可以解答本題.【詳解】解:由題意可得,,選項A錯誤;,選項B錯誤;,選項C正確;,選項D錯誤.故選:C.【點睛】本題考查的知識點是探尋數(shù)式的規(guī)律,從題目中找出式子的變化規(guī)律是解此題的關鍵.4、C【分析】先利用比例性質(zhì)得到AD:AB=3:4,再證明△ADE∽△ABC,然后利用相似比可計算出AC的長.【詳解】解:解:∵AD=9,BD=3,
∴AD:AB=9:12=3:4,
∵DE∥BC,
∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形;在利用相似三角形的性質(zhì)時主要利用相似比計算線段的長.5、A【分析】首先根據(jù)圓周角定理求得∠BOC,然后根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì)即可求得∠OCB.【詳解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案為A.【點睛】本題主要考查了圓周角定理、等腰三角形的性質(zhì)以及三角形的內(nèi)角和定理,掌握并靈活利用相關性質(zhì)定理是解答本題的關鍵.6、B【分析】根據(jù)“左加右減,上加下減”的規(guī)律,求出平移后的函數(shù)表達式即可;【詳解】解:根據(jù)“左加右減,上加下減”得,二次函數(shù)的圖像向右平移2個單位為:;故選B.【點睛】本題主要考查了二次函數(shù)與幾何變換,掌握二次函數(shù)與幾何變換是解題的關鍵.7、B【解析】試題解析:A.是一元一次方程,故A錯誤;
B.是一元二次方程,故B正確;
C.不是整式方程,故C錯誤;
D.不是一元二次方程,故D錯誤;
故選B.8、C【解析】∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的邊長為4,BP=x,BD=y,∴x:4=y:(4?x),∴y=?x2+x.故選C.點睛:函數(shù)圖象是典型的數(shù)形結合,圖象應用信息廣泛,通過看圖象獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題能力、解決問題能力.用圖象解決問題時,要理清圖象的含義即會識圖.9、D【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為12,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,
∴∠BOC=×360°=60°,
∵OB=OC,∴△OBC是等邊三角形,
∵正六邊形ABCDEF的周長為12,
∴BC=12÷6=2,
∴OB=BC=2,∴BM=BC=1,
∴OM==,
∴S△OBC=×BC×OM=×2×=,
∴該六邊形的面積為:×6=6.
故選:D.【點睛】此題考查了圓的內(nèi)接六邊形的性質(zhì)與等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結合思想的應用.10、C【分析】由AD是的高可得和為直角三角形,由勾股定理求得AD的長,解三角形得AB的長,連接BE.由同弧所對的圓周角相等可知∠BEA=∠ACB,解直角三角形ABE即可求出AE.【詳解】解:如圖,連接BE,∵AD是的高,∴和為直角三角形,∵AC=5,DC=3,,∴AD=4,,∵,∴∠BEA=∠ACB,∵AE是的直徑,∴,即是直角三角形,sin∠BEA=sin∠ACB=,∴,故選:C.【點睛】本題考查了直徑所對的圓周角是直角、同弧所對的圓周角相等、解直角三角形和勾股定理,熟練掌握定理是解題的關鍵.二、填空題(每小題3分,共24分)11、7【分析】本題先化簡絕對值、算術平方根以及零次冪,最后再進行加減運算即可.【詳解】解:=6-3+1+3=7【點睛】此題主要考查了實數(shù)的混合運算,熟練掌握運算法則是解答此題的關鍵.12、【分析】設BC=EC=a,根據(jù)相似三角形得到,求出a的值,再利用tanA即可求解.【詳解】設BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴tanF==故答案為:.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知矩形的性質(zhì)及正切的定義.13、1【分析】直接利用關于原點對稱點的性質(zhì)得出答案.【詳解】∵點P(2,﹣1)關于原點的對稱點坐標為(﹣2,m),∴m=1.故答案為:1.【點睛】此題主要考查了關于原點對稱點的性質(zhì),正確把握對應點橫縱坐標的關系是解題關鍵.14、【分析】先根據(jù)勾股定理求出AB的長,進而得出CD的長,再求出AD,BD的長,由點與圓的位置關系即可得出結論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
∴AB==1.
∵CD⊥AB,∴CD=.
∵AD?BD=CD2,
設AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.
∵點A在圓外,點B在圓內(nèi),∴BD<r<AD,
∴r的范圍是,
故答案為:.【點睛】本題考查的是點與圓的位置關系,熟知點與圓的三種位置關系是解答此題的關鍵.15、【分析】根據(jù)相似三角形的性質(zhì),得出,將AC、AB的值代入即可得出答案.【詳解】即DC=故答案為:.【點睛】本題考查了相似三角形的性質(zhì),熟練掌握性質(zhì)定理是解題的關鍵.16、m>1【分析】根據(jù)反比例函數(shù),如果當x>0時,y隨自變量x的增大而增大,可以得到1-m<0,從而可以解答本題.【詳解】解:∵反比例函數(shù),當x>0時,y隨x的增大而增大,∴1-m<0,
解得,m>1,
故答案為:m>1.【點睛】本題考查反比例函數(shù)的性質(zhì),解答本題的關鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.17、或【分析】根據(jù)可知,因此分和兩種情況討論,當時,;當時,利用勾股定理求出斜邊AB,再由即可得.【詳解】(1)當時,BC為斜邊,AC為所對的直角邊則(2)當時,AB為斜邊,AC為所對的直角邊設,則由勾股定理得:則綜上,答案為或.【點睛】本題考查了直角三角形中銳角三角函數(shù),熟記銳角三角函數(shù)的計算方法是解題關鍵.18、【分析】首先根據(jù)題意畫出表格,然后由表格求得所有等可能的結果與其乘積等于0的情況,再利用概率公式即可求得答案;【詳解】解:畫表格得:共由20種等可能性結果,其中乘積為0有8種,故乘積為0的概率為,故答案為:.【點睛】本題主要考查了列表法與樹狀圖法,掌握列表法與樹狀圖法是解題的關鍵.三、解答題(共66分)19、(1)假;(2)3【分析】(1)判定是真假命題,要看拋物線與坐標軸交點的個數(shù),當有3個交點時是真命題,有兩個或一個交點時不能構成三角形.(2)先求拋物線與坐標軸的交點坐標,再求面積即可.【詳解】解:(1)假命題.如果拋物線與x坐標軸沒有交點時,不能形成三角形.(2)拋物線解析式為與軸交點坐標為,與軸交點坐標為,“拋物線三角形”的面積為【點睛】本題考查了拋物線的性質(zhì),再求拋物線與坐標軸的交點組成的三角形的面積.20、(1);(2)或;(3).【分析】(1)先求出A,B的坐標,再代入二次函數(shù)即可求解;(2)根據(jù)函數(shù)圖像即可求解;(3)先求出C點坐標,再根據(jù)平移的性質(zhì)得到,設點,則,把D點代入二次函數(shù)即可求解.【詳解】解:(1)令,得,∴.把代入,解得.把,代入,得,∴,∴二次函數(shù)的表達式為.(2)由圖像可知,當時,或.(3)令,則,∴.∵平移,∴,∴.設點,則,∴,∴,(舍去).∴.【點睛】此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關鍵是熟知待定系數(shù)法的運用.21、(1)(2)【分析】(1)根據(jù)從A、D、E、F四個點中任意取一點,一共有4種可能,只有選取D點時,所畫三角形是等腰三角形,即可得出答案;(2)利用樹狀圖得出從A、D、E、F四個點中先后任意取兩個不同的點,一共有12種可能,進而得出以點A、E、B、C為頂點及以D、F、B、C為頂點所畫的四邊形是平行四邊形,即可求出概率.【詳解】解:(1)根據(jù)從A、D、E、F四個點中任意取一點,一共有4種可能,只有選取D點時,所畫三角形是等腰三角形,所畫三角形是等腰三角形的概率P=;故答案為(2)用“樹狀圖”或利用表格列出所有可能的結果:∵以點A、E、B、C為頂點及以D、F、B、C為頂點所畫的四邊形是平行四邊形,∴所畫的四邊形是平行四邊形的概率P==.考點:列表法與樹狀圖法;等腰三角形的判定;平行四邊形的判定.22、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數(shù)解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯(lián)立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯(lián)立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉(zhuǎn)化得到AM=BN,設點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側,∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數(shù)表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數(shù)表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點的橫坐標相同,且BH=MH,∵M是拋物線上一點,∴可設點M的坐標為(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴點N的橫坐標為﹣4,可設直線AC:y=kx﹣3,則0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,當x=﹣4時,y=﹣(﹣4)﹣3=1,∴點N的坐標為(﹣4,1).【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì),還涉及到全等三角形的判定及其性質(zhì)、三角形面積公式等知識點,綜合性較強,解題的關鍵是熟練掌握二次函數(shù)的圖象與性質(zhì).23、(1)x=3或x=1;(2)x=5【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【詳解】解:(1)∵x(x﹣3)=x﹣3,∴x(x﹣3)﹣(x﹣3)=0,則(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得x=3或x=1;(2)∵x2﹣10x+6=0,∴x2﹣10x=﹣6,則x2﹣10x+25=﹣6+25,即(x﹣5)2=19,∴x﹣5=±,則x=5.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.24、(1)﹣1,﹣2;(2)D(1,4);(3)Q1(0,6),Q2(0,﹣6),Q3(0,2);(4)不變,的定值為,證明見解析【分析】(1)先根據(jù)非負數(shù)的性質(zhì)求出a、b的值;(2)故可得出A、B兩點的坐標,設D(1,t),由DC∥AB,可知C(2,t﹣2),再根據(jù)反比例函數(shù)的性質(zhì)求出t的值即可;(3)由(2)知k=4可知反比例函數(shù)的解析式為y=,再由點P在雙曲線y=上,點Q在y軸上,設Q(0,y),P(x,),再分以AB為邊和以AB為對角線兩種情況求出x的值,故可得出P、Q的坐標;(4)連NH、NT、NF,易證NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT由此即可得出結論.【詳解】解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E為AD中點,∴xD=1,設D(1,t),又∵四邊形ABCD是平行四邊形,∴C(2,t﹣2).∴t=2t﹣4,∴t=4,∴D(1,4);(3)∵D(1,4)在雙曲線y=上,∴k=xy=1×4=4,∴反比例函數(shù)的解析式為y=,∵點P在雙曲線y=上,點Q在y軸上,∴設Q(0,y),P(x,),①當AB為邊時:如圖1所示:若ABPQ為平行四邊形,則=0,解得x=1,此時P1(1,4),Q1(0,6);如圖2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年咖啡機銷售合同范本
- 殯葬車合同協(xié)議
- 快遞代理商合同協(xié)議
- 2025如何撰寫果樹種植及收購合同范本
- 正規(guī)出國勞務合同協(xié)議
- 商業(yè)訂單委托合同協(xié)議
- 2025年餐飲業(yè)用工的勞動合同范本
- 2025企業(yè)標準勞動合同模板
- 2025年度廣告合作合同模板
- 勞務派遣合作協(xié)議書5
- 二下音樂《阿西里西(簡譜、五線譜)》公開課課件
- 【涪陵榨菜產(chǎn)品成本控制問題及完善措施分析9600字】
- 公司外派工作合同協(xié)議書
- 巾幗家政職業(yè)技能競賽(家政服務)理論考試題庫(含答案)
- 終止合作意向書
- CJJT213-2016 生活垃圾衛(wèi)生填埋場運行監(jiān)管標準
- 2024年山東省淄博市沂源縣中考二模生物試題(原卷版+解析版)
- Python自動化運維(技術與最佳實踐)
- 2024屆廣東惠城區(qū)重點達標名校中考猜題語文試卷含解析
- MOOC 離散系統(tǒng)建模與仿真理論基礎-南開大學 中國大學慕課答案
- 杜絕形式主義-從我做起
評論
0/150
提交評論