版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年福建省三明市泰寧第五中學(xué)高二數(shù)學(xué)文月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.雙曲線的頂點(diǎn)為兩點(diǎn),P為雙曲線上一點(diǎn),直線交C的一條漸近線于M點(diǎn),若的斜率分別為求雙曲線C的離心率(
)A. B. C. D.參考答案:B【分析】設(shè)出點(diǎn)的坐標(biāo),根據(jù)已知條件得出和斜率之間的對(duì)應(yīng)關(guān)系,由此求得的值,進(jìn)而求得雙曲線的離心率.【詳解】設(shè),由于,故,而,即,由于,故,化簡(jiǎn)得①,由于在雙曲線上,故,即②,對(duì)比①②兩個(gè)式子可知,故雙曲線的離心率為,故選B.【點(diǎn)睛】本小題主要考查雙曲線離心率的求法,考查兩直線垂直斜率的對(duì)應(yīng)關(guān)系,考查分析與解決問(wèn)題的能力,屬于中檔題.2.直線xcosα+y+2=0的傾斜角的范圍是 ()A.[,)∪(,]B.[0,]∪[,π)
C.[0,]
D.[,]參考答案:B3.對(duì)于非空實(shí)數(shù)集,記.設(shè)非空實(shí)數(shù)集合,滿足.給出以下結(jié)論:①;
②;
③.其中正確的結(jié)論是▲.(寫(xiě)出所有正確結(jié)論的序號(hào))參考答案:①4.“”是“函數(shù)在區(qū)間[1,+∞)單調(diào)遞增”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件參考答案:A分析:求出導(dǎo)函數(shù),若函數(shù)在單調(diào)遞增,可得在區(qū)間上恒成立.解出,故選A即可.詳解:,
∵若函數(shù)函數(shù)在單調(diào)遞增,
∴在區(qū)間上恒成立.
∴,而在區(qū)間上單調(diào)遞減,
∴.即“”是“函數(shù)在單調(diào)遞增”的充分不必要條件.
故選A..點(diǎn)睛:本題考查充分不必要條件的判定,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化方法,屬中檔題.5.已知函數(shù)上單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是(
)
A.
B.
C.
D.參考答案:D略6.設(shè),且恒成立,則的最大值是(
)A.
B.
C.
D.參考答案:C略7.拋物線y2=﹣x的準(zhǔn)線方程是()A.y= B.y= C.x= D.x=參考答案:D【考點(diǎn)】拋物線的簡(jiǎn)單性質(zhì).【分析】拋物線y2=﹣x的開(kāi)口向左,且2p=,由此可得拋物線y2=﹣x的準(zhǔn)線方程.【解答】解:拋物線y2=﹣x的開(kāi)口向左,且2p=,∴=∴拋物線y2=﹣x的準(zhǔn)線方程是x=故選D.【點(diǎn)評(píng)】本題考查拋物線的性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.8.若直線l:y=kx+1(k<0)與圓C:x2+4x+y2﹣2y+3=0相切,則直線l與圓D:(x﹣2)2+y2=3的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定參考答案:A【考點(diǎn)】J7:圓的切線方程.【分析】利用直線l:y=kx+1(k<0)與圓C:x2+4x+y2﹣2y+3=0相切,求出k,再判斷則直線l與圓D:(x﹣2)2+y2=3的位置關(guān)系.【解答】解:圓C:x2+4x+y2﹣2y+3=0,可化為:(x+2)2+(y﹣1)2=2,∵直線l:y=kx+1(k<0)與圓C:x2+4x+y2﹣2y+3=0相切,∴=(k<0),∴k=﹣1,∴圓心D(2,0)到直線的距離d==,∴直線l與圓D:(x﹣2)2+y2=3相交,故選:A.9.銳角三角形ABC中,abc分別是三內(nèi)角ABC的對(duì)邊設(shè)B=2A,則的取值范圍是()A.(﹣2,2) B.(0,2) C.(,2) D.(,)參考答案:D【考點(diǎn)】正弦定理;同角三角函數(shù)基本關(guān)系的運(yùn)用.【專(zhuān)題】計(jì)算題.【分析】先根據(jù)正弦定理得到=,即可得到,然后把B=2A代入然后利用二倍角的正弦函數(shù)公式化簡(jiǎn),最后利用余弦函數(shù)的值域即可求出的范圍.【解答】解:根據(jù)正弦定理得:=;則由B=2A,得:====2cosA,而三角形為銳角三角形,所以A∈(,)所以cosA∈(,)即得2cosA∈(,).故選D【點(diǎn)評(píng)】考查學(xué)生利用正弦定理解決數(shù)學(xué)問(wèn)題的能力,以及會(huì)利用二倍角的正弦函數(shù)公式化簡(jiǎn)求值,會(huì)求余弦函數(shù)在某區(qū)間的值域.10.設(shè)F1、F2為曲線C1:的焦點(diǎn),P是曲線:與C1的一個(gè)交點(diǎn),則的面積為()A.
B.1
C.
D.參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.若,則___________.參考答案:【分析】先化簡(jiǎn)已知得,再利用平方關(guān)系求解.【詳解】由題得,因?yàn)?,所以故答案為:【點(diǎn)睛】本題主要考查誘導(dǎo)公式和同角的平方關(guān)系,意在考察學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.12.冪函數(shù),當(dāng)取不同的值時(shí),在區(qū)間上它們的圖象是一簇美麗的曲線,如題(14)圖,設(shè)點(diǎn),,連接AB,線段AB恰好被其中的兩個(gè)冪函數(shù),的圖象三等分,即,則________;參考答案:113.從某班抽取5名學(xué)生測(cè)量身高(單位:cm),得到的數(shù)據(jù)為160,162,159,160,159,則該組數(shù)據(jù)的方差s2=______.參考答案:
14.三棱柱的底面是邊長(zhǎng)為的正三角形,側(cè)面是長(zhǎng)方形,側(cè)棱長(zhǎng)為,一個(gè)小蟲(chóng)從點(diǎn)出發(fā)沿表面一圈到達(dá)點(diǎn),則小蟲(chóng)所行的最短路程為_(kāi)______.參考答案:5略15.若在區(qū)間和上分別各取一個(gè)數(shù),記為和,則方程表示焦點(diǎn)在軸上的橢圓的概率為
▲
.參考答案:略16.設(shè)函數(shù),則使得成立的的取值范圍是
參考答案:17.已知雙曲線的一個(gè)焦點(diǎn)坐標(biāo)為,則其漸近線方程為
.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知函數(shù)f(x)=cos(2x﹣)﹣cos2x(x∈R).(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;(II)△ABC內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a,b.,c,若f()=﹣,b=1,c=且a>b,求B和C.參考答案:【考點(diǎn)】正弦定理的應(yīng)用;兩角和與差的正弦函數(shù).【分析】(1)將f(x)解析式第一項(xiàng)利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由正弦函數(shù)的遞增區(qū)間為[2kπ﹣,2kπ+],x∈Z列出關(guān)于x的不等式,求出不等式的解集即可得到f(x)的遞增區(qū)間;(2)由(1)確定的f(x)解析式,及f()=﹣,求出sin(B﹣)的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出B的度數(shù),再由b與c的值,利用正弦定理求出sinC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出C的度數(shù),由a大于b得到A大于B,檢驗(yàn)后即可得到滿足題意B和C的度數(shù).【解答】解:(1)f(x)=cos(2x﹣)﹣cos2x=sin2x﹣cos2x=sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,x∈Z,解得:kπ﹣≤x≤kπ+,x∈Z,則函數(shù)f(x)的遞增區(qū)間為[kπ﹣,kπ+],x∈Z;(2)∵f(B)=sin(B﹣)=﹣,∴sin(B﹣)=﹣,∵0<B<π,∴﹣<B﹣<,∴B﹣=﹣,即B=,又b=1,c=,∴由正弦定理=得:sinC==,∵C為三角形的內(nèi)角,∴C=或,當(dāng)C=時(shí),A=;當(dāng)C=時(shí),A=(不合題意,舍去),則B=,C=.19.如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點(diǎn)E是SD上的點(diǎn),且DE=a(0<≦1).(Ⅰ)求證:對(duì)任意的(0、1),都有AC⊥BE:(Ⅱ)若二面角C-AE-D的大小為600C,求的值。參考答案:(Ⅰ)證明:連接BD,由底面是正方形可得ACBD。
SD平面ABCD,BD是BE在平面ABCD上的射影,由三垂線定理得ACBE.(II)解析:SD平面ABCD,CD平面ABCD,
SDCD.又底面ABCD是正方形,
CDAD,又SDAD=D,CD平面SAD。過(guò)點(diǎn)D在平面SAD內(nèi)做DFAE于F,連接CF,則CFAE,故CFD是二面角C-AE-D的平面角,即CFD=60°在Rt△ADE中,AD=,DE=,AE=
。于是,DF=在Rt△CDF中,由cot60°=得,
即=3,解得=20.袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)(n=1,2,3,4).現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào).(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ+b,Eη=1,Dη=11,試求a,b的值.參考答案:略21.設(shè)點(diǎn)A為半徑是1的圓O上一定點(diǎn),在圓周上等可能地任取一點(diǎn)B.(1)求弦AB的長(zhǎng)超過(guò)圓內(nèi)接正三角形邊長(zhǎng)的概率;(2)求弦AB的長(zhǎng)超過(guò)圓半徑的概率.參考答案:解:(1)設(shè)“弦AB的長(zhǎng)超過(guò)圓內(nèi)接正三角形邊長(zhǎng)”為事件M,以點(diǎn)A為一頂點(diǎn),在圓中作一圓內(nèi)接正三角形ACD,如右圖所示,則要滿足題意點(diǎn)B只能落在劣弧CD上,又圓內(nèi)接正三角形ACD恰好將圓周3等分,故.
……6分答:弦AB的長(zhǎng)超過(guò)圓內(nèi)接正三角形邊長(zhǎng)的概率為.(2)設(shè)“弦AB的長(zhǎng)超過(guò)圓的半徑”為事件N,以圓的半徑OA為邊長(zhǎng)作出兩正三角形AOC和AOD,如圖所示,則AC=AD=圓的半徑OA,所以滿足題意的點(diǎn)B只能落在優(yōu)弧CD上,又,故劣弧CD的長(zhǎng)為,即優(yōu)弧CD的長(zhǎng)為所以.答:弦AB的長(zhǎng)超過(guò)圓的半徑的概率是.
……12分22.(本大題滿分13分)已知函數(shù).(1)求的單調(diào)遞減區(qū)間.(2)若在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.參考答案:解:(1)······3分
········
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 提前解除勞動(dòng)合同的賠償計(jì)算與支付方式
- 聯(lián)合經(jīng)營(yíng)協(xié)議書(shū)范本
- 證人保證書(shū)范文2024年
- 買(mǎi)賣(mài)定金合同協(xié)議書(shū)
- 2024年外墻施工分包合同范本
- 2024中國(guó)銀行信托投資公司外匯固定資產(chǎn)貸款合同
- 互聯(lián)網(wǎng)投資合作協(xié)議書(shū)怎么寫(xiě)
- 2024設(shè)備保修合同模板
- 土方設(shè)備互換協(xié)議
- 2024年二手車(chē)轉(zhuǎn)讓合同模板
- 重癥肌無(wú)力指南
- 限制被執(zhí)行人駕駛令申請(qǐng)書(shū)
- 項(xiàng)目主要施工管理人員情況
- 個(gè)人借條電子版模板
- 關(guān)于學(xué)習(xí)“國(guó)語(yǔ)普通話”發(fā)聲亮劍【三篇】
- 玻璃廠應(yīng)急預(yù)案
- 嬰幼兒游戲照料(嬰幼兒回應(yīng)性照護(hù)課件)
- 貨車(chē)進(jìn)入車(chē)間安全要求
- MAC地址-廠商對(duì)應(yīng)表
- 2022年中國(guó)出版業(yè)總體狀況分析
- BIM大賽題庫(kù)含答案
評(píng)論
0/150
提交評(píng)論