版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2012年各地中考數(shù)學解析匯編12分式與分式方(2012浙江省湖州市,3,3分)要使分式1有意義,x的取值滿足 x 0,即x≠0【答案】選(2012 )
x2xx
有意義的x的取值范圍x
x2
x0x2
x【解析】要使原代數(shù)式有意義,需x
x0;2x-1x【答案】解不等式組2x1
x0x12(2012浙江省嘉興市,5,4分)
xx
A.x=- B. C.x=1或x=- D.x x1【解析】x20,則需滿足x20x=1,【答案】【點評】0x0,需滿足分子為零,同時分母不為
x2
1x
的結(jié)果 2x
x21
x
D.2x【答案】 其中a=-3.【解析】先將各分式的分子、分母分解因式,再進行分式乘除法混合運算,后代入計算【答案】原式=(9a)(9a)2(a3) (a2=a
9
a當a
3時,原式3232【點評】本題主要分式乘除法混合運算,注意解答的規(guī)范化,是基礎題
x22
x
x2x
x
2(x1)x2
x1(x1)(x
x1x2
x(x
x x解不等組得:-3<x<-x(答案不唯一點評:本題分式的化簡求值,解不等式組結(jié)合同時選取使分式有意義的值(2012浙江省義烏市,8,3分)下列計算的是 C.a(chǎn)b
D.120.2ab2a
x3y2
b
0.7ab7a
x2 【解析】A.不正確.由分式的基本型分式的分子分母同時乘以10
0.2a0.7a
2a7a
;B.【答案】
1 x
,可得 1x2
B.
x2
2xx2
2xx2【答案】
xx
1
的結(jié)果是 A.x B.x- C.— D.6.解析:本題是分式的加法運算,分式的加減,首先看分母是否相同,同分母的分式加減,分母不變,
x2x
x
x2xx
x(x1)xx1
(2012 )
x x
25 【解析】根據(jù)分式的加減法法則計算即可【答案
5,答案為(2012山東泰安,22,3分)化簡
2mm
m)m
m2【解析】把括號里的分式通分化為同分母分式的運算,再把除法變?yōu)槌朔?,為了便于約分,能分解因式
2m m) m m m2
2m(m2)m(m2)m24(m2)(m2) m2=m
=m-【答案】m- a24 a14 a2= 4a
a24
a
a2
a24
aa=(a2)(a
a2a
.a
.a
=-2,
=4,
=-4 的值
x
y
z
xyyz【解析】由
=-2,得xy=-1裂項得1+1=-1同理1+1=
,x,
111111=-144=-1
11=-1xyyzzx=11
=-1,所
xyyz【答案】【點評此題取材于八年級數(shù)學教師分式全章后的拓展資源具有一定的難度屬于技能考查2 ,19(1,5 2
x
1)x1
x212x1x1x2=x2
=-2 m2(2012,3,3(6)化簡(1+m)÷m22m【解析】首先把括號里因式進行通分,然后把除法運算轉(zhuǎn)化成乘法運算,分母是多項式的要先因式分解【答案】m1m
(m(m1)(m
mm【點評】本題主要考查分式的化簡,注意除法要為乘法運算;以及符號的處理等 ,16,6)(1aba2 abbababaababaa a (2012,14,6)計算代數(shù)式acbca1b2c3a aacbc,分子再提一個公因式c(aa a約分之后得到結(jié)果是c
c
a
bcabac=a(a=a=a1、b2、c3時,2012,19,6)a+2【解析】首先把分子分解因式,再約分,合并同類項即可【答案】原式 【點評】此題主要考查了分式的加減法,關鍵是掌握計算方法,做題時先注意觀察,找準方法再計算
x2x11
12【答案】解: 12
x2=1 x代入求值(除x=1外的任何實數(shù)都可以x0.(2012省南充市,15,6分)計算
aa a2
a2-a+a-
xx
1
的結(jié)果是 A.x B.x- C.— D.
x2x
x
x2xx
x(x1)xx1
x2x11
12【答案】解: 12
x2=1 x代入求值(除x=1外的任何實數(shù)都可以x0. a(2012省南充市,15,6分)計算 a a2
a2-a+a-
a1a
a2a22a【解析將分式分子母因式分解,除法化為乘約分再計所以,原=1-a1a
a(a2)
=1a1【答案】
a【點評】本題綜合考查了異分母分式的減法、除法及運用公式法進行分解因式等知識
4a-
a-
的結(jié)果是 a
C.a-
a
a-(1
4)
=(1
4)a-2=1a-2
4a-2=a2a-
a-
a-
a- 【答案】【點評】本題主要考查分式的混合運算,通分、因式分解和約分是解答的關鍵,屬于基礎題(2012市,2010(105已知:11 (ab,5
a(a
【解析】分式通分,把分式化簡后,根據(jù)分式加法的逆用即可轉(zhuǎn)化為已知式a【答案】解 a
a2=
a
11 b(a
a(a
ab(a
5 5【點評】本題考查了分式的化簡求值,注意也可用兩頭向中間湊的方式求代數(shù)式的值33(2012山東德州中考,17,6,)已知:x 1,y 1,33
x22xyx2
(x(xy)(xx
……(2=x
33當x 1,y 1時,原式33
(6221322133(2012,18,6)(
1)
2,其中a2
1.a
a a【解析】(
1)
=(a1(a1)(a1)=
a
212
a
a
a
(a1)(a
a1
a12【答案】解(2
1)
=(a1(a1)(a1)=2a
a
a
(a1)(a
a1a
212
。所以(
1)
2 22a12
a
a a 5x2 (
x2
x2
其中 3(2)(x(2)(x
5x x
63
1 362363點評:此題考查了分式的化簡求值,分式的加減運算關鍵是通分,通分的關鍵是找出最簡公分母;分式
4a-
a-
的結(jié)果是 A.a B. C.a-
a
a-(1
4)
=(1
4)a-2=1a-2
4a-2=a2a-
a-
a-
a- 【答案】【點評】本題主要考查分式的混合運算,通分、因式分解和約分是解答的關鍵,屬于基礎題(2012市,2010(105 已知: (ab,5
a(a
【解析】分式通分,把分式化簡后,根據(jù)分式加法的逆用即可轉(zhuǎn)化為已知式a【答案】解 a
a2=
a
11 b(a
a(a
ab(a
5 5【點評】本題考查了分式的化簡求值,注意也可用兩頭向中間湊的方式求代數(shù)式的值 襄陽,13,3)2=
的解 x【解析】直接去分母,得2(x+3)=5x,解得x=2.經(jīng)檢驗x=2是原方程的解【答案】
a2. a2解析:先將括號里面的通分并將分子、分母分解因式,然后將除法轉(zhuǎn)換成乘法,約分化簡答案:解:原式1a(a1)(a a(a1aa
a(a1)(a1)(a1)(2012山東省荷澤(a
a2)a2
a1
a1)2012tan【解析】先把括號內(nèi)的分式進行通過,然后利用分式的乘法進行化簡,把a的值根據(jù)乘方和特殊角的三2(a1)(a a a 【答案(1)原式
3(a1)(a (a1)(a a當a=(1)2012+tan60°=1+3時 531+331+333
=3 6【點評】對于化簡求值的問題,一定先化簡,然后再進行代入求值b2
332ab 33先化簡,再求值 a2
+),其中a=2
,b=2 【解析】
b2a2
2aba
1
【答案】解:原式=(ba)(ba)
·ab=-1a(a (a 33當a=2 ,b=2 時33(2(23)(2
(2)2((2)2(2(2012呼和浩特,17,5分(5分)先化簡,再求值:( ),其中x32【答案】
))= 將x3代入,原式= 22 3 (2012山西,14,3分)化 的結(jié)果 【解析】解 ?故答案為:【答案 肇慶,20,7)先化簡,后求值:
1 x=-x x2【解析】按照運算順序,先算括號內(nèi)異分母分式的加法,把分式的除法變成分式的乘法,約分后得到x【答案】解:原式
x11x
(x1)(x
x xx
(x1)(xx
(4=x
當x=-4時,原式=x1=- (7(201217,5)2ab-
a2ba ab
a
(2ab)(ab)b(ab)(ab)(ab)
ab2a22ababb2ab=(ab)(a2a2=(ab)(a2a(a=(ab)(a a 瀘州,22,5分)化簡:(2a a)a a
a1
a
a1
a 荊州,19,7分)(本題滿分7分)先化簡,后求值(1a1)(a3
22a
a2【解析】本題了分式的混合計算,要求先化簡后求值原式
a
a
1a3=1a3=a
a
a
a
=222212222222a
(2012萊蕪18,6)1
a
,其中a【解析】1
a
=a2
a2a3
a2 a2 a24a a2 a24 a a3
=a3a2a2aa
a2
a
aa3a232a2x
4),然后從 x5x5
5解析:先將第一個分式的分子、分母分解因式,后面括號內(nèi)的通分后,變除法為乘法,然后再約
(x(x(x2x2)(x
x22x21=x5 x 5xx只能取-15x=113 a2(2012,20,6)20a312a6a=5【解析】先把分式的分子、分母進行因式分解,根據(jù)有理數(shù)的運算順序,先算括號內(nèi)的,再算除法后,再代入求值
a3
2a
a
2a 【答案:原式=a
a
a
aa=5時
a3
a2a
aa 5 )
2aa2
2aa
1,再用一個你最喜歡的數(shù)代替a
2(a-2)(a2)(a-2)
a·
a
a.a a的值.解答:解:+ 當 六盤水,19,8(1數(shù)作為a的值代入求值.
3)a
a22aa2
a=0a (a2)(a(2) aaa
(a當a=0時,原式a22a 3 178)3x22x1x
x21x
x
2【答案】x22x1x21
(x1)2(x1)(x1) x
x
x
x
x
x22(x1)2x
x
xxxx
xx
2時,原式 =33133132 x x 0(2012·哈爾濱,題號21分值6)先化簡,再求代數(shù)式 )x x2
x=cos3021x【答案】解:原式 x3331333
x(x=x1
x×x
x(xx
COS30°+2
+ ∴原式=【點評】分式的化簡運算是中計算題的重點內(nèi)容之一,本題考查分式的運算,分式的混合運算:先乘(1)(2012遵義,20,分)化簡分式(﹣)÷,并從﹣1≤x≤3中選一個你認為x
xx=﹣1x=1,此時原式 =2(2012呼和浩特,17,5分(5分)先化簡,再求值:( ),其中x32 【答案】 )= 1)2x 將x3代入,原式= 22 3 1 a22ab 市18,6分)已知a3,b2,求代數(shù)式 的 b a11a22abb2
a
(a
ab
(ab)【解答: b
a
ab
(a
(a 將a3,b2代入上式:1 3
1x1的結(jié)果 x2
1xx4
xxx (2012 省巴中市,24,5)先化簡,再求值(
x= xx【解析】原式
x(x+1)
,x+1<0
2
時1>0,∴
時,原式 121【答案2 【點評】注意分 故有x+1>0時化簡
x2
x
(2012)0=1(2)本題需先把分式的分子x2-1因式分解為(x+1)(x-1),分子分母進行約分再進行實數(shù)的加減法運算即可
x2·x
xx
=(x1)(x1)x=x-
x
【點評】本題(1)考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵一(2) ,12,6分)先化簡,再求值
1),其中x 2【解析】先化簡括號內(nèi)2
x1 x21 x1【答案】解
x1=xx
22時,原式 222【點評】本題考查分式的化簡求值.解題時注意化簡的順序
x
3 x26x
x2xx
x221
3 x(x1)
3x
xx
(x x
x1 x
x(x1 1x
x(x
x
1x(x (2012省,155)5)
2
x121【解析】一看是異分母的分式相加1
x1x1,后項利用平方差公式得到(x1)(x1約分(x1)(x后得到結(jié)果
x12x,把x 代入得到原式=12【答案】解1)(x (1)(x (x1)(x(((
2x1x1當x 12原式22(a3
7)a
a2a
a
a216a
a2(a=(a4)(a4)2(aa=2(a=2a
a,17(2,5
x2
x1
x
【解析】先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可【答案】解:原式=
x1- xx=x
x1x 1x
x【點評】本題考查的是實分式混合運算的法則
x2
x2184
x
的值,其中x是不等式組
2x1【解析】先對分式進行化簡,然后求不等式的整數(shù)解,代入化簡后的式子求值2【答案】2
x-
x+2(x+1)(x-1
=x
x22x2x1
得2<x ,因為x是整數(shù),所2x3x3時,原式=.4【點評】考查了分式的運算及不等式組的解法(201219,7)11
,再請你選擇一個合適的數(shù)作為x的值代入求值 x1
x2x1 1x1
x1
x1
x≠0x≠±1 (6 3
x24x
x1 xx2x6【解析】分式,因式分【答案
x1 3
x24xx1x2 1= )1
xxx (xx24 xx (x 2)(x2) xx (xxxx2x
xx2x6 x1=21x=2分式無意義;當x=–3時,原式5【點評】分式混合運算要注意先去括號;分子、分母能因式分解的先因式分解;除法要為乘法運算15x30=
30=
30=
30= x
x
x
x 【解析】15x(x+15)時,然后根據(jù)“時間=x30和40 x【答案】【點評】題意中x與15之間是相加的關系,而非x-15,讀題過程中,可以將未知數(shù)代入理解
100
的解是 20 20 答案(2012,8,3分)分式方
x
的解為 x
x
x
x程的根是不是增根。本題中,去分母,得3x12xx3xC。A、B、C、D2012,14,3)
x-21x+4=
2的解 2【解析】方程兩邊都乘以2(x+4)得2(x-2)=x+4,去括號,得2x-4=x+4解得【答案】【點評】本題考查用去分母法解分式方程,要注意檢驗 咸寧,18,8分)解方
x
1
x2【解析】觀察可得最簡公分母是(x+2(x-2,方程兩邊乘以最簡公分母,把分式方程轉(zhuǎn)化為整式方【答案】x
方程兩邊同時乘以(x2x2
2x48解得x2x2時(x2x2)0x2【點評】本題主要考查了分式方程的解法.此題比較簡單,注意轉(zhuǎn)化思想的應用,解分式方程一定要驗根 (201214)
=0的解 xx-4(x2)3x04x83x0x8x8x
x1
x 移項合并得:x=3經(jīng)檢驗,x=3是原方程的解,所以原方程的解是(201234題)把分
x
轉(zhuǎn)化為一元一次方程時,方程兩邊需同乘以 x【答】案某款定速空調(diào)在條列實施后,每一臺,客戶可獲200元,若同樣用1萬元所的此款空調(diào)臺數(shù),條例實施后比條例實施前多10%,則條例實施前此款空調(diào)的售價為 【解析x10000(110%)
x=2200【答案】2200元
x【點評】注意本題中的10%是條例實施后比條例實施前10000元多買的臺數(shù)(2012,20,8)3 x【解析】本題考查了分式方程的解法.掌握解分式方程的方法是關鍵.先去分母,再解此整式方【答案】去分母得,3(x+1)=2x,去括號、移項得,3x-2x=-3,x=-3,經(jīng)檢驗,x=-3 xn2
3,②xx
5,③xx
7用它們所蘊含的規(guī)律,求關于x的方程x 2n4(n為正整數(shù))的根,你的答x是 x【解析】由 1或x2xx由 2或x3xx由 3或x4xn(n故由(x3) n(n1)得x3n或x3n1;所以xn+3或xn4(x3)【答案xn3xn4(23n2【點評】本題為規(guī)律探索題,主要考查了考生觀察、類比、歸納的能力.特別還需將x 2n4x化為發(fā)現(xiàn)的規(guī)律形式.常見解題思路:從特殊情形入手——探索發(fā)現(xiàn)規(guī)律——猜想結(jié)論——驗證.難度較大.(2012山東德州中考,18,8,)解方程:
x2
x
0,舍去增根即可.解:方程兩邊同乘x2-1整理
x2x2解 x11,x2所以原方程的根是x2.【點評】此題考查了分式方程的解法,屬于比較簡單的題型,解答此類題記檢驗
x
600x
x
60x66x60x3
x30x30點評:解分式方程的步驟是去分母、解整式方程、檢驗,當大題時一定了檢驗
x
=1的解是 【解析】解分式方程,x=15【答案】77
1x-8=7x=1512 省畢節(jié)市,9,3)10,分式方程112
22x
x
x
(x+1)-D.2(2012 省巴中市,20,3)若關于x的方
+
=2有增根,則m的值 x-22-2-x-m=2(2-xx=2,2-2-m=0【答案】2,直接代入分母為零,但可去mm(2012宜賓,6,3分)分式方 C.無解D.3
-x2
=x
x
的解為((x+3(x﹣3(x+3(x﹣3解得(x+3(x﹣3)=03(2012市,9,2)方程x
x
答案
x
=03(x-2)-2x=0,x=6,(2012,17,6分)解方程
x
1解析:首先找到最簡公分母3x(x+5),3x(x+5),,6x=x+5點評本題分式方程的求解關鍵是找到最簡公分母和去分母解題時要記得檢驗分式方程的解難度較低。 x(x+1移項得(2012·183)
x 2x
【解析】2x+3=3(x-1)x=6,x=6【答案】【點評中,對分式方程的考查一般有三種形式:1、直接解分式方程;2、利用分式方程解應用題;3、1、230 (2012中考試題第18題,6分
2 3x
;9x2解析: ,即是2 2
3x 9x
3x 13
2方法二: ,即是2 2 3x 9x 3x 所 2
3x1
3x (2012山西,20,7分)解方程:2(3x﹣1化簡,﹣6x=﹣3,解得x=.【答案】(2012,208)當x
32
x
【解析】根據(jù)題意可列
3-2
x
【答案】列方程得
3-2
x
450x【答案】解:設原計劃每天生產(chǎn)x臺機器,則現(xiàn)在可生產(chǎn)(x+50)依題意得:x
450x故選【點評】501(2012達州,7,3分)為保證達萬高速公路在2012年底全線順利通車,某路段規(guī)定在若干天內(nèi)完成修建任務.已知甲隊單獨完成這項工程比規(guī)定時間多用10乙隊單獨完成這項工程比規(guī)定時間多用40111A 1C 1
B 111D 1
111 11(x+1011
x
、x
答案
x
1500(2)【答案(1)設甲公司單獨完成此工程x天,則乙公司單獨完成此項工程1.5x天,根據(jù)題意,得 ,解之得,x=20,x=20,1.5x=30, =102000,解之得,y=5000.甲公司單獨完成此工程所需施工費:20×5000=100000(元),乙公司單獨完成此工程所需施工費:30×(5000-1500)=105000(元,故甲公司的施工費較少?!军c評】本題考查了分式方程的應用,解題的關鍵是從實際問題中整理出等量關系并利用等量關系求解(2012貴陽18分為了全面提升中小學教師的綜合素質(zhì)貴陽市將對教師的專業(yè)知識每三年行一次考核某校決定為全校數(shù)學教師每人一本義務教《數(shù)學課程標準(2011版)(以簡《準》),同時每人配套一本《數(shù)學課程標準(2011版)解讀》以下簡稱《解讀》).中《解讀的單價《標準的單價多5元若學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版門窗企業(yè)品牌戰(zhàn)略規(guī)劃合作合同4篇
- 2025年度新能源汽車代采購合同規(guī)范范本3篇
- 二零二五版美容美體中心實習美容師就業(yè)保障合同4篇
- 2025年新科版選修6地理上冊月考試卷
- 2025年湘教版高三地理下冊月考試卷含答案
- 2025年度水利工程沉降觀測與質(zhì)量控制合同4篇
- 2025年度二零二五MCN機構網(wǎng)紅藝人形象推廣獨家合作協(xié)議范本3篇
- 2025年度煤場信息化建設租賃合同范本4篇
- 2025年度大型會展中心抹灰工程承包合同4篇
- 二零二五年度路基施工環(huán)境保護合同4篇
- 2025年中國高純生鐵行業(yè)政策、市場規(guī)模及投資前景研究報告(智研咨詢發(fā)布)
- 湖北省黃石市陽新縣2024-2025學年八年級上學期數(shù)學期末考試題 含答案
- 2022-2024年浙江中考英語試題匯編:完形填空(學生版)
- 2025年廣東省廣州市荔灣區(qū)各街道辦事處招聘90人歷年高頻重點提升(共500題)附帶答案詳解
- 中試部培訓資料
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報告
- 央視網(wǎng)2025亞冬會營銷方案
- 北師大版數(shù)學三年級下冊豎式計算題100道
- 計算機網(wǎng)絡技術全套教學課件
- 《無砟軌道施工與組織》 課件 第十講雙塊式無砟軌道施工工藝
- 屋頂分布式光伏發(fā)電項目施工重點難點分析及應對措施
評論
0/150
提交評論