




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④2.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.3.直線l過拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.74.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)5.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.6.已知滿足,則()A. B. C. D.7.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.28.若函數(shù)在時(shí)取得極值,則()A. B. C. D.9.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.210.若復(fù)數(shù)()在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在直線上,則等于()A. B. C. D.11.設(shè),則關(guān)于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線12.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長,,成等差數(shù)列,則的離心率為__________.14.已知(為虛數(shù)單位),則復(fù)數(shù)________.15.如圖,在中,已知,為邊的中點(diǎn).若,垂足為,則的值為__.16.已知雙曲線(,)的左,右焦點(diǎn)分別為,,過點(diǎn)的直線與雙曲線的左,右兩支分別交于,兩點(diǎn),若,,則雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過點(diǎn),過點(diǎn)且不平行于坐標(biāo)軸的直線交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交軸于點(diǎn).(1)求的周長;(2)求面積的最大值.18.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動(dòng),求面積的最大值.20.(12分)在△ABC中,分別為三個(gè)內(nèi)角A、B、C的對(duì)邊,且(1)求角A;(2)若且求△ABC的面積.21.(12分)如圖,四邊形中,,,,沿對(duì)角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項(xiàng)和;(2)已知數(shù)列滿足:(?。?duì)任意的;(ⅱ)對(duì)任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.2.D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.3.B【解析】
根據(jù)拋物線中過焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過拋物線的焦點(diǎn),由過拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.4.D【解析】
求解一元二次不等式化簡A,求解對(duì)數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.5.D【解析】
“是的充分不必要條件”等價(jià)于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點(diǎn)睛】利用原命題與其逆否命題的等價(jià)性,對(duì)是的充分不必要條件進(jìn)行命題轉(zhuǎn)換,使問題易于求解.6.A【解析】
利用兩角和與差的余弦公式展開計(jì)算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.7.B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8.D【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)椋?,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于常考題型.9.C【解析】
作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.10.C【解析】
由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項(xiàng).【詳解】由題意得,解得,所以,所以,故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.11.C【解析】
根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實(shí)軸在y軸上的雙曲線,
故選C.【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.12.C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.14.【解析】
解:故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.15.【解析】
,由余弦定理,得,得,,,所以,所以.點(diǎn)睛:本題考查平面向量的綜合應(yīng)用.本題中存在垂直關(guān)系,所以在線性表示的過程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長度,利用余弦定理和面積公式求解即可.16.【解析】
設(shè),由雙曲線的定義得出:,由得為等腰三角形,設(shè),根據(jù),可求出,得出,再結(jié)合焦點(diǎn)三角形,利用余弦定理:求出和的關(guān)系,即可得出離心率.【詳解】解:設(shè),由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設(shè),,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義的應(yīng)用,以及余弦定理的應(yīng)用,求雙曲線離心率.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)12(2)【解析】
(1)根據(jù)焦距得焦點(diǎn)坐標(biāo),結(jié)合橢圓上的點(diǎn)的坐標(biāo),根據(jù)定義;(2)求出橢圓的標(biāo)準(zhǔn)方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達(dá)定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點(diǎn),由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當(dāng)且僅當(dāng)在短軸頂點(diǎn)處取等,故面積的最大值為.【點(diǎn)睛】此題考查根據(jù)橢圓的焦點(diǎn)和橢圓上的點(diǎn)的坐標(biāo)求橢圓的標(biāo)準(zhǔn)方程,根據(jù)直線與橢圓的交點(diǎn)關(guān)系求三角形面積的最值,涉及韋達(dá)定理的使用,綜合性強(qiáng),計(jì)算量大.18.(1);(2).【解析】
(1)先由余弦定理求得,再由正弦定理計(jì)算即可得到所求值;
(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點(diǎn)睛】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡整理的運(yùn)算能力,屬于中檔題.19.(1):,:;(2)【解析】
(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點(diǎn)到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點(diǎn)到直線的距離的最大值為,所以面積的最大值為.【點(diǎn)睛】本題考查了參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.20.(1);(2).【解析】
(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【點(diǎn)睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡能力,屬于基礎(chǔ)題.21.(1)見證明;(2)【解析】
(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時(shí)通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線與平面所成的角.求解時(shí)注意向量的夾角與線面角間的關(guān)系.22.(1);(2)①;②證明見解析.【解析】
(1)由條件可得,結(jié)合等差數(shù)列的定義和通項(xiàng)公式、求和公式,即可得到所求;(2)①若,可令,運(yùn)用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當(dāng),,,由等比數(shù)列的定義和不等式的性質(zhì),化簡變形,即可得到所求結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高端會(huì)議組織與服務(wù)合同
- 二零二五年度土地流轉(zhuǎn)互換與農(nóng)業(yè)科技創(chuàng)新合作合同
- 人體模特?cái)z影作品展示與推廣合同(2025年度)
- 2025年度股票轉(zhuǎn)讓與法律顧問服務(wù)協(xié)議
- 電子游戲機(jī)品牌市場占有率與競爭策略研究
- 2025至2030年中國真空注液/封口機(jī)數(shù)據(jù)監(jiān)測研究報(bào)告
- 環(huán)境資源管理理論與實(shí)踐的融合
- 環(huán)保材料在校園建設(shè)中的應(yīng)用案例
- 2025年02月青島市市屬事業(yè)單位工作人員(222人)筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 保值租購合同范本
- 骶髂關(guān)節(jié)損傷郭倩課件
- 內(nèi)科學(xué)疾病概要-支氣管擴(kuò)張課件
- 2025陜西渭南光明電力集團(tuán)限公司招聘39人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 教學(xué)課件-電力系統(tǒng)的MATLAB-SIMULINK仿真與應(yīng)用(王晶)
- GB/T 26189.2-2024工作場所照明第2部分:室外作業(yè)場所的安全保障照明要求
- 新教科版一年級(jí)科學(xué)下冊(cè)第一單元《身邊的物體》全部課件(共7課時(shí))
- 鹽城江蘇鹽城市住房和城鄉(xiāng)建設(shè)局直屬事業(yè)單位市政府投資工程集中建設(shè)管理中心招聘4人筆試歷年參考題庫附帶答案詳解
- 預(yù)防感冒和流感的方法
- 2024年黑龍江職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024年南京旅游職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 《電商直播》 課件 項(xiàng)目一 走入電商直播
評(píng)論
0/150
提交評(píng)論