常州市實驗初級中學2022年高三壓軸卷數學試卷含解析_第1頁
常州市實驗初級中學2022年高三壓軸卷數學試卷含解析_第2頁
常州市實驗初級中學2022年高三壓軸卷數學試卷含解析_第3頁
常州市實驗初級中學2022年高三壓軸卷數學試卷含解析_第4頁
常州市實驗初級中學2022年高三壓軸卷數學試卷含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現對大橋某路段上1000輛汽車的行駛速度進行抽樣調查.畫出頻率分布直方圖(如圖),根據直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,2.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.3.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數分別記為,則下列結論正確的是()A. B. C. D.4.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數為,則為()A. B. C. D.5.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數是()A.12 B.16 C.20 D.86.已知復數滿足:(為虛數單位),則()A. B. C. D.7.()A. B. C.1 D.8.己知函數的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.9.已知為實數集,,,則()A. B. C. D.10.設集合,則()A. B.C. D.11.拋擲一枚質地均勻的硬幣,每次正反面出現的概率相同,連續(xù)拋擲5次,至少連續(xù)出現3次正面朝上的概率是()A. B. C. D.12.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數字1,2,3,4,5,6的正方體),觀察向上的點數,則事件“點數之積是3的倍數”的概率為____.14.滿足約束條件的目標函數的最小值是.15.設(其中為自然對數的底數),,若函數恰有4個不同的零點,則實數的取值范圍為________.16.設,滿足約束條件,若的最大值是10,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.18.(12分)為了拓展城市的旅游業(yè),實現不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為,現規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.20.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數為,求的分布列和數學期望;(2)證明:數列是等比數列;(3)求甲在登山過程中,恰好登上第級臺階的概率.21.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.22.(10分)已知橢圓與拋物線有共同的焦點,且離心率為,設分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(含邊界)時,求直線的斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數,同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數、頻率的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.2.C【解析】

命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.3.A【解析】

根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.4.A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數學期望為.故選:A.【點睛】本題考查隨機變量數學期望的計算,考查計算能力,屬于基礎題.5.A【解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.6.A【解析】

利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.7.A【解析】

利用復數的乘方和除法法則將復數化為一般形式,結合復數的模長公式可求得結果.【詳解】,,因此,.故選:A.【點睛】本題考查復數模長的計算,同時也考查了復數的乘方和除法法則的應用,考查計算能力,屬于基礎題.8.A【解析】

先將函數解析式化簡為,結合題意可求得切點及其范圍,根據導數幾何意義,即可求得的值.【詳解】函數即直線與函數圖象恰有四個公共點,結合圖象知直線與函數相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數的圖像與性質的綜合應用,由交點及導數的幾何意義求函數值,屬于難題.9.C【解析】

求出集合,,,由此能求出.【詳解】為實數集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.10.B【解析】

直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.11.A【解析】

首先求出樣本空間樣本點為個,再利用分類計數原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數,再求出重復數量,可得事件的樣本點數,根據古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數量為,事件的樣本點數為:個.故不同的樣本點數為8個,.故選:A【點睛】本題考查了分類計數原理與分步計數原理,古典概型的概率計算公式,屬于基礎題12.D【解析】

先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】總事件數為,目標事件:當第一顆骰子為1,2,4,6,具體事件有,共8種;當第一顆骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。14.-2【解析】

可行域是如圖的菱形ABCD,代入計算,知為最小.15.【解析】

求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,,當,,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及.求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題.16.【解析】

畫出不等式組表示的平面區(qū)域,數形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數可轉化為與直線平行,數形結合可知當且僅當目標函數過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數的最值求參數值,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質,當軸時,最??;(2)設點,,分別代入拋物線方程和得到三個方程,消去,得到關于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標準方程,,根據拋物線的性質,當軸時,最小,最小值為,即為4.(2)由題意,設點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【點睛】本題主要考查拋物線的方程和性質和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復雜式子的變形能力不足,導致錯解.18.(1)沒有(2)分布列見解析,(3)證明見解析【解析】

(1)根據公式計算卡方值,再對應卡值表判斷..(2)根據題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據期望公式求值.(3)因為至少8個的偶數個十字路口,所以,即.要證,即證,根據組合數公式,即證;易知有.成立.設個路口中有個路口種植楊樹,下面分類討論①當時,由論證.②當時,由論證.③當時,,設,再論證當時,取得最小值即可.【詳解】(1)本次實驗中,,故沒有99.9%的把握認為喜歡樹木的種類與居民所在的城市具有相關性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因為,所以.設個路口中有個路口種植楊樹,①當時,,因為,所以,于是.②當時,,同上可得③當時,,設,當時,,顯然,當即時,,當即時,,即;,因此,即.綜上,,即.【點睛】本題考查獨立性檢驗、離散型隨機變量的分布列以及期望、排列組合,還考查運算求解能力以及必然與或然思想,屬于難題.19.(1)證明見解析;(2).【解析】

(1)證明,得到平面,得到證明.(2)以點為坐標原點,建立如圖所示的空間直角坐標系,平面的一個法向量為,平面的一個法向量為,計算夾角得到答案.【詳解】(1)因為四邊形是菱形,且,所以是等邊三角形,又因為是的中點,所以,又因為,,所以,又,,,所以,又,,所以平面,所以,又因為是菱形,,所以,又,所以平面,所以.(2)由題意結合菱形的性質易知,,,以點為坐標原點,建立如圖所示的空間直角坐標系,則,,,,,設平面的一個法向量為,則:,據此可得平面的一個法向量為,設平面的一個法向量為,則:,據此可得平面的一個法向量為,,平面與平面所成銳二面角的余弦值.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.20.見解析【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論