初一數(shù)學(xué)實(shí)數(shù)教案模板_第1頁(yè)
初一數(shù)學(xué)實(shí)數(shù)教案模板_第2頁(yè)
初一數(shù)學(xué)實(shí)數(shù)教案模板_第3頁(yè)
初一數(shù)學(xué)實(shí)數(shù)教案模板_第4頁(yè)
初一數(shù)學(xué)實(shí)數(shù)教案模板_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

初一數(shù)學(xué)實(shí)數(shù)教案模板使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;一起看看初一數(shù)學(xué)實(shí)數(shù)教案!歡迎查閱!初一數(shù)學(xué)實(shí)數(shù)教案1教學(xué)目標(biāo).使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;.培養(yǎng)學(xué)生觀察能力,提高他們分析問(wèn)題和解決問(wèn)題的能力;.使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣.教學(xué)重點(diǎn)和難點(diǎn)一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟.課堂教學(xué)過(guò)程設(shè)計(jì)一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問(wèn)題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問(wèn)題能否應(yīng)用一元一次方程來(lái)解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?為了回答上述這幾個(gè)問(wèn)題,我們來(lái)看下面這個(gè)例題.例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).(首先,用算術(shù)方法解,由學(xué)生回答,教師板書(shū))解法1:(4+2片(3-1)=3.答:某數(shù)為3.(其次,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)解法2:設(shè)某數(shù)為x,則有3x-2=x+4.解之,得x=3.答:某數(shù)為3.縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過(guò)解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對(duì)于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.本節(jié)課,我們就通過(guò)實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟例2某面粉倉(cāng)庫(kù)存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉(cāng)庫(kù)原來(lái)有多少面粉?師生共同分析:.本題中給出的已知量和未知量各是什么?.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來(lái)重量-運(yùn)出重量=剩余重量)3.若設(shè)原來(lái)面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?上述分析過(guò)程可列表如下:解:設(shè)原來(lái)有x千克面粉,那么運(yùn)出了15%x千克,由題意,得x-15%x=42500,所以x=50000.答:原來(lái)有50000千克面粉.此時(shí),讓學(xué)生討論:本題的相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?(還有,原來(lái)重量=運(yùn)出重量+剩余重量;原來(lái)重量-剩余重量=運(yùn)出重量)教師應(yīng)指出:(1)這兩種相等關(guān)系的表達(dá)形式與“原來(lái)重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,可以任意選擇其中的一個(gè)相等關(guān)系來(lái)列方程;(2)例2的解方程過(guò)程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.依據(jù)例2的分析與解答過(guò)程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問(wèn)的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:(1)仔細(xì)審題,透徹理解題意.即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);(3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;(4)求出所列方程的解;(5)檢驗(yàn)后明確地、完整地寫(xiě)出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義.例3(投影)初一2班第一小組同學(xué)去蘋(píng)果園參加勞動(dòng),休息時(shí)工人師傅摘蘋(píng)果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問(wèn)第一小組有多少學(xué)生,共摘了多少個(gè)蘋(píng)果?(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過(guò)程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書(shū)寫(xiě)本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書(shū)寫(xiě)格式)解:設(shè)第一小組有X個(gè)學(xué)生,依題意,得3x+9=5x-(5-4),解這個(gè)方程:2x=10,所以x=5.其蘋(píng)果數(shù)為3x5+9=24.答:第一小組有5名同學(xué),共摘蘋(píng)果24個(gè).學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.(設(shè)第一小組共摘了x個(gè)蘋(píng)果,則依題意,得)三、課堂練習(xí).買(mǎi)4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問(wèn)練習(xí)本每本多少元?.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元.求1978年末的儲(chǔ)蓄存款..某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).四、師生共同小結(jié)首先,讓學(xué)生回答如下問(wèn)題:.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?.列一元一次方程解應(yīng)用題的方法和步驟是什么?.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?依據(jù)學(xué)生的回答情況,教師總結(jié)如下:(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書(shū)寫(xiě)答案.其中第三步是關(guān)鍵;(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.五、作業(yè).買(mǎi)3千克蘋(píng)果,付出10元,找回3角4分.問(wèn)每千克蘋(píng)果多少錢(qián)?.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?.某廠去年10月份生產(chǎn)電視機(jī)2050臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái).這家工廠前年10月生產(chǎn)電視機(jī)多少臺(tái)?.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù)撸坏泉?jiǎng)每人200元,二等獎(jiǎng)每人50元.求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù).初一數(shù)學(xué)實(shí)數(shù)教案2一、素質(zhì)教育目標(biāo)(一)知識(shí)教學(xué)點(diǎn).要求學(xué)生學(xué)會(huì)用移項(xiàng)解方程的方法..使學(xué)生掌握移項(xiàng)變號(hào)的基本原則.(二)能力訓(xùn)練點(diǎn)由移項(xiàng)變形方法的教學(xué),培養(yǎng)學(xué)生由算術(shù)解法過(guò)渡到代數(shù)解法的解方程的基本能力.(三)德育滲透點(diǎn)用代數(shù)方法解方程中,滲透了數(shù)學(xué)中的化未知為已知的重要數(shù)學(xué)思想.(四)美育滲透點(diǎn)用移項(xiàng)法解方程明顯比用前面的方法解方程方便,體現(xiàn)了數(shù)學(xué)的方法美.二、學(xué)法引導(dǎo).教學(xué)方法:采用引導(dǎo)發(fā)現(xiàn)法發(fā)現(xiàn)法則,課堂訓(xùn)練體現(xiàn)學(xué)生的主體地位,引進(jìn)競(jìng)爭(zhēng)機(jī)制,調(diào)動(dòng)課堂氣氛..學(xué)生學(xué)法:練習(xí)玲移項(xiàng)法制玲練習(xí)三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法.重點(diǎn):移項(xiàng)法則的掌握..難點(diǎn):移項(xiàng)法解一元一次方程的步驟..疑點(diǎn):移項(xiàng)變號(hào)的掌握.四、課時(shí)安排3課時(shí)五、教具學(xué)具準(zhǔn)備投影儀或電腦、自制膠片、復(fù)合膠片.六、師生互動(dòng)活動(dòng)設(shè)計(jì)教師出示探索性練習(xí)題,學(xué)生觀察討論得出移項(xiàng)法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成.七、教學(xué)步驟(一)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入師提出問(wèn)題:上節(jié)課我們研究了方程、方程的解和解方程的有關(guān)知識(shí),請(qǐng)同學(xué)們首先回顧上節(jié)課的有關(guān)內(nèi)容;回答下面問(wèn)題.(出示投影1)利用等式的性質(zhì)解方程; (2);解:方程的兩邊都加7, 解:方程的兩邊都減去,得, 得,即. 合并同類(lèi)項(xiàng)得.【教法說(shuō)明】通過(guò)上面兩小題,對(duì)用等式性質(zhì)解方程進(jìn)行鞏固、回憶,為講解新方法奠定基礎(chǔ).提出問(wèn)題:下面我們觀察上面方程的變形過(guò)程,從中觀察變化的項(xiàng)的規(guī)律是什么?(二)探索新知,講授新課投影展示上面變形的過(guò)程,用制作復(fù)合式運(yùn)動(dòng)膠片將上面的變形展示如下,讓學(xué)生觀察在變形過(guò)程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).(出示投影2)師提出問(wèn)題:1.上述演示中,兩個(gè)題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果派代表上報(bào)教師,分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:大家討論的結(jié)論,有如下共同點(diǎn):①方程(1)的已知項(xiàng)從左邊移到了方程右邊,方程(2)的項(xiàng)從右邊移到了左邊;②這些位置變化的項(xiàng)都改變了原來(lái)的符號(hào).【教法說(shuō)明】在這里的投影變化中,教師要抓住時(shí)機(jī),讓學(xué)生發(fā)現(xiàn)變化的規(guī)律,準(zhǔn)確掌握這種變化的法則,也是為以后解更復(fù)雜方程打下好的基礎(chǔ).師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).(三)嘗試反饋,鞏固練習(xí)師提出問(wèn)題:我們可以回過(guò)頭來(lái),想一想剛解過(guò)的兩個(gè)方程哪個(gè)變化過(guò)程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說(shuō)出哪一過(guò)程是移項(xiàng).【教法說(shuō)明】可由學(xué)生對(duì)前面兩個(gè)解方程問(wèn)題用移項(xiàng)過(guò)程,重新寫(xiě)一遍,以理解解方程的步驟和格式.對(duì)比練習(xí):(出示投影3)解方程:(1);(2);;(4).學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問(wèn)題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、合并同類(lèi)項(xiàng)、檢驗(yàn).)【教法說(shuō)明】這部分教學(xué)旨在于使學(xué)生學(xué)會(huì)用移項(xiàng)這一手段解方程的方法,通過(guò)學(xué)生動(dòng)手嘗試,理解解方程的步驟,從而掌握移項(xiàng)這一法則.鞏固練習(xí):(出示投影4)通過(guò)移項(xiàng)解下列方程,并寫(xiě)出檢驗(yàn).(1); (2);; (4).【教法說(shuō)明】這組題訓(xùn)練學(xué)生解題過(guò)程的嚴(yán)密性,故采取學(xué)生親自動(dòng)手做,四個(gè)同學(xué)板演形式完成.(四)變式訓(xùn)練,培養(yǎng)能力(出示投影5)口答:.下面的移項(xiàng)對(duì)不對(duì)?如果不對(duì),錯(cuò)在哪里?應(yīng)怎樣改正?(1)從,得到;(2)從,得到;(3)從,得到;.小明在解方程時(shí),是這樣寫(xiě)的解題過(guò)程:;(1)小明這樣寫(xiě)對(duì)不對(duì)?為什么?(2)應(yīng)該怎樣寫(xiě)?【教法說(shuō)明】通過(guò)以上兩題進(jìn)一步印證移項(xiàng)這種變形的規(guī)律,即“移項(xiàng)要變號(hào)”.要使學(xué)生認(rèn)清這里的移項(xiàng)是把某項(xiàng)從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書(shū)寫(xiě)格式是方程在變形,變形時(shí)保持“左右兩邊相等”這一數(shù)學(xué)模式.(出示投影6)用移項(xiàng)解方程:(1); (2);(3);(4).【教法說(shuō)明】這組題增加了難度,即移項(xiàng)變形是左右兩邊都有可移的項(xiàng),教學(xué)時(shí)由學(xué)生思考后再進(jìn)行解答書(shū)寫(xiě),可提醒學(xué)生先分組討論,各組由一名同學(xué)敘述解題過(guò)程,教師歸納出最嚴(yán)密最精煉的解題過(guò)程,最后全體學(xué)生都做這幾個(gè)題目.學(xué)生活動(dòng):5分鐘競(jìng)賽:規(guī)則是分兩大組,基礎(chǔ)分100分,每組同學(xué)全對(duì)1人加10分,不全對(duì)1人減10分,互相判題,學(xué)習(xí)委員記分.(出示投影7)解下列方程:(1); (2); (3);(4);(5);(6).【教法說(shuō)明】這組題用競(jìng)賽的形式,由學(xué)生獨(dú)立完成是為了培養(yǎng)學(xué)生的解方程的速度和能力,同時(shí)激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí),從而達(dá)到調(diào)動(dòng)全體學(xué)生參與的目的,而互相評(píng)判更增加了課堂上的民主意識(shí).(五)歸納小結(jié)師:今天我們學(xué)習(xí)了解方程的變形方法,通過(guò)學(xué)習(xí)我們應(yīng)該明確兩個(gè)方面的問(wèn)題:①解方程需把方程中的項(xiàng)從一邊移到另一邊,移項(xiàng)要變號(hào)這是重點(diǎn).②檢驗(yàn)要把所得未知數(shù)的值代入原方程.初一數(shù)學(xué)實(shí)數(shù)教案3一、素質(zhì)教育目標(biāo)(一)知識(shí)教學(xué)點(diǎn).通過(guò)本節(jié)知識(shí)的學(xué)習(xí),使學(xué)生清楚了解方程、方程的解的概念,以及解方程的含義..讓學(xué)生學(xué)會(huì)根據(jù)條件列出方程.(二)能力訓(xùn)練點(diǎn).通過(guò)例2的教學(xué),培養(yǎng)學(xué)生解決數(shù)學(xué)問(wèn)題的思想方法和綜合分析問(wèn)題的思維能力..通過(guò)例3方程的解的檢驗(yàn)問(wèn)題培養(yǎng)學(xué)生準(zhǔn)確解題的能力及數(shù)學(xué)問(wèn)題的嚴(yán)密性.(三)德育滲透點(diǎn)從已知到未知,從特殊到一般的認(rèn)識(shí)問(wèn)題的方法.(四)美育滲透點(diǎn)通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生會(huì)進(jìn)一步體會(huì)到概念中語(yǔ)言的準(zhǔn)確美與簡(jiǎn)潔美.二、學(xué)法引導(dǎo).教學(xué)方法:以嘗試指導(dǎo)為主、練習(xí)鞏固為輔,體現(xiàn)學(xué)生的主體活動(dòng),增強(qiáng)課堂上民主意識(shí)的體現(xiàn)..學(xué)生學(xué)法:識(shí)記玲練習(xí)三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法.重點(diǎn):使學(xué)生了解方程的有關(guān)概念,會(huì)檢驗(yàn)方程的解,并能根據(jù)求某數(shù)的簡(jiǎn)單條件,列出某數(shù)為未知數(shù)的一元方程(僅限于一次,二次)..難點(diǎn):列關(guān)于某數(shù)的簡(jiǎn)單方程..疑點(diǎn):關(guān)于方程解的理解.四、課時(shí)安排l課時(shí)五、教具學(xué)具準(zhǔn)備投影儀或電腦、自制膠片.六、師生互動(dòng)活動(dòng)設(shè)計(jì)教師出示探索性練習(xí)題,學(xué)生討論解答,得出有關(guān)概念,教師出示鞏固性練習(xí)題,學(xué)生以多種形式完成.七、教學(xué)步驟(-)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入師:我們上一節(jié)共同學(xué)習(xí)了等式和等式的性質(zhì),我們知道了用“等號(hào)”表示相等關(guān)系的式子叫做等式.下面請(qǐng)同學(xué)們思考如下問(wèn)題:(出示投影1)或電腦顯示如下.如果,那么,為什么?(根據(jù)什么等式性質(zhì)).如果,那么,根據(jù)等式什么性質(zhì)?.如果,那么,根據(jù)等式什么性質(zhì)?.如果,那么,根據(jù)等式什么性質(zhì)?師:同學(xué)們對(duì)這組問(wèn)題回答的非常準(zhǔn)確,條理清楚.說(shuō)明我們掌握新知識(shí),學(xué)習(xí)新方法的勁頭很足,望同學(xué)們發(fā)揚(yáng).(二)探索新知,講授新課師:請(qǐng)同學(xué)們觀察上面題中等式:;;;.這些等式中,象-3,6,2,-1,3,-7,5,8這些數(shù)都是已知的,我們把這些數(shù)叫做已知數(shù).再觀察式中的也表示一個(gè)數(shù),不難發(fā)現(xiàn)它相當(dāng)于一個(gè)問(wèn)號(hào)“?”,在研究它之前是未知的,像這樣的數(shù)叫做未知數(shù),像這樣的式子,我們已經(jīng)知道它是等式,因此方程就是含有未知數(shù)的等式.師提出問(wèn)題:(1)請(qǐng)同學(xué)們把這個(gè)結(jié)果代入方程中,看一看會(huì)有什么結(jié)果?當(dāng)學(xué)生能夠回答出時(shí)方程左右兩邊相等這一結(jié)果后,引出概念:使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解,只有一個(gè)未知數(shù)的方程的解也叫方程的根.(2)再觀察到的變形過(guò)程a被減數(shù)等于差加上減數(shù).得,即.再據(jù)一個(gè)因數(shù)等于積除以另一個(gè)因數(shù),得,即.(說(shuō)明是小學(xué)解法)e兩邊都加上7,得,,即.兩健都除以5,得,.提出問(wèn)題:上面兩種變形最終我們求出了什么?兩種方法所得結(jié)果一樣嗎?【教法說(shuō)明】通過(guò)上面提問(wèn)由學(xué)生展開(kāi)討論,教師歸納上面過(guò)程實(shí)質(zhì)上就是求方程解的過(guò)程.師:求得方程解的過(guò)程,叫做解方程.如:求得方程的解的兩種方法,都可以叫解方程.(三)嘗試反饋,鞏固練習(xí)師提出問(wèn)題:現(xiàn)在請(qǐng)同學(xué)們分組討論,由各組派代表回答,如何判斷一個(gè)式子是方程?學(xué)活動(dòng):分組討論,準(zhǔn)備派代表回答,回答結(jié)果:(1)含有未知數(shù),(2)等式.(出示投影2)例1判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù),如果不是,說(shuō)明為什么?①;②③④.【教法說(shuō)明】例1教學(xué)應(yīng)注意,方程必須是含有未知數(shù)的等式.未知數(shù)的系數(shù)是1,可以省寫(xiě).這個(gè)1,也是已知數(shù),已知數(shù)包括它的符號(hào).鞏固練習(xí):(出示投影3)判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說(shuō)明為什么?①;②③④.【教法說(shuō)明】這組可采用分組搶答形式,用競(jìng)賽加分的辦法完成以增加學(xué)生學(xué)習(xí)的積極性,如:分成四組,班長(zhǎng)記分,教師主持.師提出問(wèn)題:如果設(shè)某數(shù)為,請(qǐng)大家把下面的句子用方程的形式表示出來(lái),看誰(shuí)做得快.(出示投影4)(1)某數(shù)的與1的和是2;(2)某數(shù)的4倍等于某數(shù)的3倍與7的差;(3)某數(shù)與8的差的等于0.學(xué)生活動(dòng):學(xué)生動(dòng)筆動(dòng)腦分析得出方程,由一個(gè)學(xué)生寫(xiě)在黑板上,如:(1);(4);(3).【教法說(shuō)明】為了使學(xué)生掌握,③小題應(yīng)提醒學(xué)生注意運(yùn)算的順序,必要時(shí)加上括號(hào).另外有時(shí)得出方程可有形式上的區(qū)別.師提出問(wèn)題:請(qǐng)同學(xué)們選擇適當(dāng)?shù)奈粗獢?shù),列出例2中的方程:(出示投影5)例2根據(jù)下列條件列出方程:(1)某數(shù)比它的大;(2)某數(shù)比它的2倍小3;(3)某數(shù)的一半比某數(shù)的3倍大4;(4)某數(shù)比它的平方小42.學(xué)生活動(dòng):要求學(xué)生獨(dú)立完成上面的題目,完成后與小組同學(xué)討論,對(duì)比,分組說(shuō)出所列方程中,形式不一樣地方.【教法說(shuō)明】教師可布置學(xué)生自編兩個(gè)題目,留給同桌同學(xué)列方程,找代表說(shuō)一說(shuō)題目和方程.(四)變式訓(xùn)練,培養(yǎng)能力(出示投影6).下列各式是不是方程,如果是,指出它的未知數(shù)是什么?①;②;③;④;⑥;⑦;⑧;⑨;⑩.【教法說(shuō)明】這組題用小組競(jìng)賽的形式完成,優(yōu)勝組負(fù)責(zé)編一個(gè)這樣的題目,點(diǎn)其他組任一同學(xué)解答,答對(duì)者給以掌聲鼓勵(lì).(出示投影7).請(qǐng)同學(xué)們用兩種方法,求出下面方程的解.①②③;④.【教法說(shuō)明】這組題由學(xué)生在練習(xí)本上演練,教師指定學(xué)生口述,征求全體同學(xué)意見(jiàn).(出示投影8).請(qǐng)同學(xué)們選用適當(dāng)?shù)奈粗獢?shù),寫(xiě)一個(gè)方程使方程的解是下面的數(shù):(1)1;(2)-2;(3)0;(4)2.學(xué)生活動(dòng):分組編寫(xiě),互相交換,觀察所作方程的特征,互相交流經(jīng)驗(yàn)、方法,增強(qiáng)協(xié)作意識(shí).【教法說(shuō)明】這組題難度較大,教師在學(xué)生編題時(shí)要注意后進(jìn)生的動(dòng)態(tài),多啟發(fā)他們動(dòng)腦筋,開(kāi)發(fā)數(shù)學(xué)的逆向思維.(五)歸納小結(jié)師:本課內(nèi)容與前兩節(jié)內(nèi)容的聯(lián)系,可以用下圖表示:也就是說(shuō),方程是含有未知數(shù)的等式,可以用等式的性質(zhì)來(lái)解方程.初一數(shù)學(xué)實(shí)數(shù)教案4教學(xué)目標(biāo).知識(shí)與技能了解因式分解的意義,以及它與整式乘法的關(guān)系..過(guò)程與方法經(jīng)歷從分解因數(shù)到分解因式的類(lèi)比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用..情感、態(tài)度與價(jià)值觀在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.重、難點(diǎn)與關(guān)鍵.重點(diǎn):了解因式分解的意義,感受其作用..難點(diǎn):整式乘法與因式分解之間的關(guān)系..關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類(lèi)比,加深理解.教學(xué)方法采用“激趣導(dǎo)學(xué)”的教學(xué)方法.教學(xué)過(guò)程一、創(chuàng)設(shè)情境,激趣導(dǎo)入【問(wèn)題牽引】請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:?jiǎn)栴}1:720能被哪些數(shù)整除?談?wù)勀愕南敕?問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.二、豐富聯(lián)想,展示思維探索:你會(huì)做下面的填空嗎?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.三、小組活動(dòng),共同探究【問(wèn)題牽引】(1)下列各式從左到右的變形是否為因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.①9x2()+y2=(3x+y)();②x2-4xy+()=(x-)2.四、隨堂練習(xí),鞏固深化課本練習(xí).【探研時(shí)空】計(jì)算:993-99能被100整除嗎?五、課堂總結(jié),發(fā)展?jié)撃苡蓪W(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:.什么叫因式分解?.因式分解與整式運(yùn)算有何區(qū)別?六、布置作業(yè),專(zhuān)題突破選用補(bǔ)充作業(yè).板書(shū)設(shè)計(jì)初一數(shù)學(xué)實(shí)數(shù)教案5教學(xué)目標(biāo).知識(shí)與技能能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式..過(guò)程與方法使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解..情感、態(tài)度與價(jià)值觀培養(yǎng)學(xué)生分析、類(lèi)比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.重、難點(diǎn)與關(guān)鍵.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式..難點(diǎn):正確地確定多項(xiàng)式的公因式..關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.回公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.教學(xué)方法采用“啟發(fā)式”教學(xué)方法.教學(xué)過(guò)程一、回顧交流,導(dǎo)入新知【復(fù)習(xí)交流】下列從左到右的變形是否是因式分解,為什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.問(wèn)題:.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?.多項(xiàng)式4x2-x和xy2-yz-y呢?請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由.【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.二、小組合作,探究方法【教師提問(wèn)】多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論