版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Definition
of
entropy(熵的定義):For
any
closed
system,
it
exists
at
equilibrium
asingle
valued
state
function
called
entropy,
denoted
S,which
is
an
extensive ty.
When
the
system
ischanged
from
equilibrium
A
to
equilibrium
B,
the
entropyincrement
S
equals
the
algebraic
sum
of
the
quotient
ofheat
over
temperature
in
any
reversible
processes,
i.e.,Q
S
S
B
S
A
i(QR)i
is
the
infinitesimalTity
of
energyd
asheat
to
the
system
reversibly
at
a
temperature
Ti.1Entropy
augmenting
principium
(熵增加原理):For
aclosed
system
from
e
l A
to
equilibrium
B,forever The
entrop does
n
t an
adiabatiS=S
B
-S
A
02the
entropy
of
system
does
not
automatically
decrease.reversible
process,
and
augments
in
an
adiabatic
irreversibleprocess,
i.e.,>
adiabatic
irreversible=
adiabatic
reversibleDeduction:The
entropy
of
an
insulated
system
does
notautomatically
decrease
forever;
the
entropy
does
not
changeinreversible
processes,
and
augments
in
irreversible
processes,insulated(S) =
S
B
-
S
A
0>irreversible=
reversibleAny
system
at
equilibrium
has
a
state
function,
the
entropy,which
is
extensive
ty.
The
entropy
increment
of
systemundergone
any
process
consists
two
contributions
,i.e.,dS=deS
+diSdiSdeSdeS
Entropy
flow(熵流).
It
is
the
entropy
flowentering
into
the
system
when
the
system
exchangesenergy
and
substance
with the
surroundings
through
theboundary
,
it
has
not
defined
positive
or
negative
symboldiS
Entropy
production(熵產(chǎn)生).
It
isthe
entropyproduction
due
to
irreversible
processes
inside
the
system(such
as
diffusion,
heat
exchange,
chemical
reactions,
etc.)3Entropy
production
principium
(熵產(chǎn)生原理):The
entropy
production
inside
a
system
could
notnever
be
negat.It
is
zero
in
reversible
processes,and
is
always
above
zero
in
irreversible
processes,
i.e.,4diS
0
{}>
irreversible=
reversibleThe
equilibrium
equation
of
entropy
for
any
systemdS/dt
=
(1/T)
Qi/dt
+
Sj
dnj/dt
+
diS/dtCalculation
of
the
change
in
entropy
of
thesurroundings(環(huán)境熵變的計算)We
assume
that
each
heat
source
is
very
huge,
andwith
constant
volume
and at
fixed
uniform
temperature,itis
that
the
change
of
the
heat
source
is
always
reversible,thusδQ(-δQ
)dSHeat
source
= or
ΔSHeat
source
=
-
sys
sys
Tsur
Tsurr5heat
rceen
inS
S
S
QsysIf
Tsurisconstant,surTHere,
QHeat
source=-QsysAccording
to
the
Entropy
augmenting
principium,
theentropy
of
an
insulated
(or
isolated)
system
will
neverdecrease c
l
e
not i
e
iblprocesses,
and
will
increase
in
irreversible
processes.
Whenwe
use
entropy
to
determine
the
process,
we
often
combinethe
system
and
the
surroundings
as
an
isulated
system,
thuswe
have6Insulated(S) =
S+
Ssyssur0 {
>
irreversible
}=reversibleIII.
Calculation
of
the
entropy
change
in
non--8th
lecture-isothermal
processes(非等溫過程熵變的計算)(i)
Constant
pQp=
dH
=nCp,mdTT
T
nCp,mdTdS
QRFixed
composition
(no
chemical
reactions,
no
phasechange),
closed
system,constant
p,W′=0So,T
2T
1nCp,
mdTS
δ
Q
p
Tp,mIf
C is
constant,
thenT1Tln
T
2p,mS
nC7Evidently,if
T↑,then
S↑.(ii)
Constant
VQV=
dU
=nCv,mdTT
T
nCV
,mdTdS
QVT
2
nCV
,mdTδ
QVFixed
composition
(no
chemical
reactions,
no
phasechange),closed
system,constant
V,W′=0SoT1TSv,mIf
C
is
constant,
thenTln
T
2T
1V
,mS
nC8We
have
also,if
T↑,then
S↑.Example
2.
1mol
silver
is
heated
from
273K
to
303K
through
twofollowing
isochoric
processesa. Quasistatic
heating
by
using
a
series
of
heaters of
infinitesimaldifference
in
temperature,
no
friction;b.
Direct
heating
using
a
303K
heat
sourceKnown
that
the
CV,m=24.48
J.K-1.mol-1
is
constant,
please
evaluate
theentropy
changesof
the
system
and
its
surroundings,and
predict
theproceeding
direction
of
the
process.準靜態(tài)加熱溫差無限小熱源273.0000000002K,……273.0000000001K302.9999999998K302.9999999999KTfV
,mln
Tf
2.55J.K
1Solution
(a)
S
sys
nCV
,mdT
nC1mol
Ag,
273K,p1mol
Ag,
303K,piTTTiS
?sursurS
2.55J.K
1surdS
nCV
,mdT9TS
S
S
0isolatedsys
surreversible1mol
Ag,
303K,pb.
Direct
heating
using
a
303K
heat
sourceSolution
(b)1mol
Ag,
273K,p等壓加熱303K物體(熱源)直接接觸iTfV
,mTln
TfTTinCV
,mdT
nC
2.55J.K
1sys
sysS
?
S
System
absorbs
heatQsys
nCV
,m
(Tf
Ti
)
734.4JsursurTS
Qsys
734.4
2.42J.K
1S
insulated10303
2.55
2.42
0.13J.K
1
0
S
S
sys
surIrreversibleIV.
Calculation
of
the
entropy
change
in
phasetransition
of
pure
substances①
Reversible
phase
change
at
equilibrium
T
and
pHeat
of
*
*,
*,A()
?→
A()
phase
Hm
Hm
(
A)
?
Hm
(
A)change*
*11hase
chan
emT
m
m
H
*
S*m
S
(
)
S
()
Molar
phase
changeentropy,J.K-1.mol-12
special
cases:1.
At
p,
T,
the
phase
c occur
respectivelyboiling
point
Tb, sublimation
point
Ts,
and
fusion
point
Tf2.
The
phase
change
can
occur
also
under
saturationvapor
pressure
pS
at
a
given
temperature12②
Calculation
of
entropy
change
in
irreversiblephase
change
at
non
equilibrium
T
and
pFor
irreversible hase
chan
e
rocess we
should
find
areversible
route
to
calculate
the
entropy
change.
ForexampleB(,T1,p1)13S1B(,Teq,peq)B(,T2,p2)S3B(,
Teq,peq)S=?Irreversiblephase
changeS2Reversiblephase
changeThen,
S=S1+S2+S3Such
as,H2O(l,
90℃,
101325Pa)S1H2O(g,
90℃,101325Pa)S3H2O(g,
100℃,101325Pa)H2O(l,
100℃,
101325Pa)dTT
eqS
=?Irreversiblephase
changeS2Reversiblephase
changeTTnCp,m
(H2O,l)11S
TTTnC
(H
O,
g)
dT2p,m32T2eqS
nvap
H
m,SS=S1+S2+S314The
rinci les
to
find
a
reversible
routeEach
step
of
the
route
should
be
reversible;The
calculation
of
S
of
each
step
of
the
route
canbe
done
by
existing
formula;(iii)The
heat
data for
calculating
S
of
each
step
ofthe
route
can
be
found.15Example
3.
乙醇沸
351K的g
H
=
39.53
KJ.mol-1,
液態(tài)密l
m度=0.7600
g.dm-3,將351K
、p下的1mol液態(tài)乙醇在等溫下始終對抗外壓為0.5
p蒸發(fā)為同溫的0.5p的乙醇蒸汽,假設(shè)蒸汽為理想氣體,請計算體系乙醇的熵變及環(huán)境熵變,并判斷該過程是否為不可逆過程?設(shè)計可逆途徑計算體系熵變C2H5OH,
1mol,
l,351K,
pC2H5OH,
1mol,
g,351K,
0.5pS體fTg
HS
l
m122ppTQS
R
nRln
1C2H5OH,
1mol,
g,351K,
pU=0,R
R
1
2Q
=-W
=nRTln(p
/p
)2113
ln
118.39J.K0.539.531035118.314S
S
1
S
體計算體系與環(huán)境實際交換的熱量C2H5OH,
1mol,
l,351K,
pC2H5OH,
1mol,
g,351K,
0.5pQsysQ2
W2Q
g
H1
l
m2
1
0.5
p
V
V
C2H5OH,
1mol,
g,351K,
pIsothermalprocessQsys=Q1+Q2surg
H
l m
S
1
Qsys
116.78J.KsursurTTT0.5
p
nRT
nRT
p
psur
2
1
S
insulatedsys
S
S
118.39
116.78
1.61J.K
1
0sur17irreversibleExample
4.
在373K,p下,
水的
l
H
=
40627
J.mol-1,
=0.9583gmg.dm-3,將1mol
水由373K,
p下經(jīng)下列兩種過程變?yōu)橥瑴赝瑝合碌乃羝?a.等溫、等壓無摩擦準靜態(tài)過程b.等溫向真空 蒸發(fā)求水及環(huán)境熵變,并分別判斷兩過程的方向性Solution(a)g
*l
m108.90J.KTphase1sysS
n
H
1
40627
373surTS
Qsys
108.90J.K
1surS
S
S
0insulatedsys
surReversible18Solution(b)Free
expansionS
?sys1Ssys
108.90J.KWe=0,W’=0U
Q
We
W
'
Qsyssince
H
U
pV
sysglso
Q
H
pV
H
pV
p
V
H
p
Vg
H
nRTg
H
*sur19ST
T
l
mT
Qsys
H
nRT
nR1S
insulated
S
S
sys
sur
nR
8.314J.K
0irreversible-1=9874J.mol .已知s
mExample
5.在p下,苯的Tf
=
278.2K,l在T=268.2K
、p
下的
HCJ.K-1.mol-1,=122.6
J.K-1.mol-1,并將兩者當作常數(shù),請用s
ml
H
=
9916
J.mol-1.lp
,m=
126.8p
,mCs熵增加原理判斷268.2K、p下的1mol液態(tài)苯能否經(jīng)等溫、等壓過程變?yōu)楣虘B(tài)苯(或哪種苯更穩(wěn)定)?設(shè)計可逆途徑計算體系熵變1mol
C6H6,
s,268.2K,
ps1mol
C6H6,
l,
268.2K,
p
S
體系l278.2
nCp,mdTS1
268.2
T3278.2268.2
nCp,mdTTS
1mol
C6H6,
l,
278.2K,
p1mol
C6H6,
s,278.2K,
p20T
l
HS2
s
msys123S
S
S
S
35.49J.K
1surT
TT1sl
H
)
9874m268.2S
Qsys
36.82J.KS
insulated
1.33J.K
1
0
S
S
sys
surirreversible即在268.2K,p下,液態(tài)苯可變成固態(tài)苯,固態(tài)苯是穩(wěn)定相(或固態(tài)苯不能變成液態(tài)苯)21V.Calculation
of
entropy
change
for
mixingprocessofinertperfectgas(不同物質(zhì)惰性理想氣體混合過程的熵變求算)(a)Mixing
at
constant
T
and
V
(等溫等容混合)AnA,
pA,T,V+BnB,
pA,
BnA,
n
,PpApA+BpABB
p22BAp
nA
nB
RT
nART
nART
pV
V
VpABpA+BpABU=0
(pV)
=pV-(pAVA+pBVB)=V
(pA+pB)-
V
(pA+pB)=0H=
U
+
(pV)
=0
V=V-(V+V)=-VWork
done
by
surroundingsto
systemWsur=-p(-Vsys)=-pVWork
done
by
system
tosurroundingsWsys=-pA(0-V)-pB(0-V)=-V(pA+
pB)=pVS=0W=Wsys+Wsur=-pV+
pV
=0Since
U=0,W=0,so
Q=0Theorem
of
mixing
at
constant
T
and
V
(等溫等容混合定理)U=0,
H=0,
(pV)=0,
S=0,
V=
-V23(b)Mixing
at
constant
T
and
p
(等溫等壓混合)+VAnA,T,pVBnB,T,pnA,
nB,
T,
p,
V+U
0,Q
WS1VA+VBnA,T,pAS2VA+VBnB,T,pBS3=0V2
n Rln
VA
n Rln
xS
QR
n Rln
VAdV
VBS2
nB
Rln
xBV1
1V2
nRTVW
pdV
VA
AAAVT
V1
AS
=
S1
+
S2
+
S3
=
-R(nAlnxA
+
nBlnxB)24mix
iii1The
entropy
change
of
mixing
R
substancesr
of
perfectgas
at
constant
T
and
p
S
Rn
ln
x
0Example
6.在一個箱子中,用隔板將0.8mol的N2氣和0.2mol的O2氣隔開,兩氣體的T,p
相同,撤掉隔板使兩氣體混合.設(shè)N2和O2都是理想氣體,求混合熵變,并論證此混合為不可逆過程.解Smix251
8.314
0.8ln
0.8
0.2
ln
0.2
4.160J.K因為混合前后p=0,
V=0,
所以W=-pV0因為T=0,
所以U=0,
Q=U-W=0,為絕熱過程所以S環(huán)=0S
S
S
4.160J.K
1
0孤
體
環(huán)(不可逆)(c)Gibbs
Paradox(佯謬)Mixing
of
perfect
gases
of
the
same
substances(同種類的理想氣體(粒子)混合)AnA,
T,
p+AnA,
T,
pA2nA,
T,
PS
=
-R(nAlnxA
+
nAlnxA)
=
0
??In
fact
is
should
be26S
0VI.Calculation
of
entropy
change
in
mixingliquidsoftwodifferenttemperatures(不同溫度液體混合過程的熵變求算)(恒壓、絕熱情況下相同液體混合)T1
T2Liquid
1:from
T1
to
(T1+T2)/2212T1TT1p,mdT
T
T
nCp,m
ln
1 2S
nCdTT
TT1T2Liquid
2:from
T2
to
(T1+T2)/2222T2T
nCp,m
ln
1 2T2p,mS
nC1
2ln
T1
T2p,m2
TTS
2nC01
211
221
2121
22712since
T
T
4TT
2T
T1
20
221
1
2T
T1
2
T
2TT
T
2
T
2
2TT2
1
1
2
T
2
4TT
02
1
2T
2
2TT
T
2
4TTT
T
24TTBecauseVII.
T eral
formula
to
calculate
the
entropychange
of
perfect
gas(理想氣體熵變的一般公式)The
entropy
change
of
any
two
different
states
ofperfect
gas
of
mass
nA(T1,V1)
→
B(T2,V2)S
=
S(T2,V2)
-
S(T1,V1)11
221
2121
228For
example,
design
three
reversibleroutes
to
evalua the
entropy
changeIIsothermalV1
V2n,
T1,P,V2
IsochoricP=(V1/V2)P1
T1
T2n,
T1,P1,V1n,
T2,P2,V2,
1,P2,VV=(P1/P2)V1IIIsothermalP1
P2IsobaricT1
T2III11
221
2121
229IsobaricV1
1
V2n,
T,P1,V2IsochoricT’=(V2/V1)T12
1
2
1P1
P22121
2Calculation
formulas:1isochoricT2
nCV
,m
dTTTS1
Sisothermal
S
nR
ln
V2
V1T12isothermalisobaricT2
nCp,m
dTp2TS
S
S
nR
ln
p1
T
'T2
nCV
,m1nCp,misochoricTdTTTdT
T
'S3
Sisobaric
S11
221
2121
230Justification
of
the
equality
of
the
three
formula
2T2T1TnCV
,mdTV1VS1
nRln2TTV
,mTT1nCV
,m
dTTnC
dT
nRln
V2
2TV
,mT1nC
dTn(Cp,m
R)dTTTTV1
nRln
V2
2TTV
,mTT1T1p
,mTnC
dTnRdT
TTT
nC
dTV1V1
nRln
V2
TT
nC
dTTnC
dT2p,mV
,mT1TTT
nR(
ln
V2
lnT)
nC
dT2T
T1dT
TTV
,mT
nCT1V1p,mTT
S3111VT
VFor
ln
V2T1
0,we
can
choose
T
V2
TExample
7.
請分別用上述S三種表達式,求算2mol
CO理想氣體從300K,
25dm3變到600K,
100dm3的熵變.已知CO的3
1
1CV,m=Cp,m-R,
Cp,m
{
27.61
5.02
10
(
T
/
K
)}J
.K
.mol1isochoricTT2
nCV
,m
dTV1
TS1
Sisothermal
S
nR
ln
V2
60030012513
52.81J
.KTdT27.61
R
5.0310
T
S
nRln
100
n12isothermalisobaricTT2
nCp,m
dTp2TS
S
S
nR
ln
p1
6003002213
52.81J
.KTdT27.61
5.0310
T
pS
nRln
p1
n132isochoricTT
'
nCp,mT2nCV
,mdTTT3S
Sisobaric
SdT
T'VIII.Calculation
of
entropy
change
for
transferringdirectlyQfromhighT2
hotsourcetolowT1
hotsource(從高溫?zé)嵩碩2直接傳遞熱量Q到低溫?zé)嵩碩1的熵變求算)Q
QsyssysQsys
Qsyssys2iiTS
T
T
dT
T
2dT T
dT
22
2
QR
i
QsysQsys21
Qsys
Qsys
T
T
dT T
2dT
T
dT
1
1s
s1Q
Qs
s2
T
TT2T2-dT…..
T12
1T
T
TT
T
Q
T
sys
1
2
1
2
Since
the
systemreleases
heatsysQ
QS
Q
1sysS
Q
1
1
T
T
2 1
sur1T33Sinsulated
=
Ssys
+
Ssur
=|Q|/T2
0(spontaneous,irreversible)IX.Fundamental
equation
of
closed
system(封閉體系的基本公式)The
1st
law
gives
dU
=
Q
+
Wexp
+
W’,when
there
is
no
other
work34W’=0,
dU
=
Q+
Wexpin
a
reversible
processQ
=QR=
TdS,and
Wexp=-pdV,We
obtain
the
fundamental
equation:
dU
=TdS
-
pdVAny
processes
without
other
workFor
any
processesIn
reversible
processesdU=
Q+Wexp
=TdS
-
pdVQ
=
TdS,
Wexp
=
-pdVIn
irreversible
processes
Q
TdS,
Wexp
>
-pdVSince
the
circular
integration
dU
0so
theTdS
pdVi.e.,
in
a
circular
process,
the
work
done
by
system35
pdV
equals
TdSBased
on
this
point
we
may
use
the
T-S
chart
torepresent
work.T-Schart
of
Carnotc cle
of
erfeTT12I2IIIV過程I:
恒溫可逆膨脹(熵增加)IQ
Q2T12
2T
TSI
S2
S1
或QI=T2(S2-S1)=Q234III恒溫可逆膨脹中,體系從高溫?zé)嵩碩2取得熱Q2=T2S過程II:
絕熱可逆膨脹(熵不變)SII=0,
QII=0過程III:
恒溫可逆壓縮(熵減少)III1Q
QSIII
S1
S2
T1
T1S1
S2
S循環(huán)過程完成后,有U
dU
0;
S
dS
0W
Q
Qi
T2
S2
S1
T1
S2
S1
i熱機效率體系從低溫?zé)嵩碩1取熱Q1=-T1S過程IV:絕熱可逆壓縮(熵不變)SVI=0,
QVI=0循環(huán)過程包圍的面積
W
Q2
吸熱過程I線段下的面積Charts
of
Carnotc cle
of
erfeexpressed
usingdifferent
variablesp
TT1121224434UST33V1
2p321S2VH3
4414373SX.
The Entropy
change
in
chemical
reactions(化學(xué)反應(yīng)的熵變)The
entropy
change
in
chemical
reaction
can
be
alsoobtained
by
designing
a
reversible
route,
and
to
calculate
thesum
of
quotient
of
heat
over
temperature
in
this
route.However,
since
the
establishment
of
the
third
law
ofthermodynamics,
the
data
of
“absolute”
entropy(calorimetric
entropy)
of
each
substance
can
be
found
in
listof
thermodynamic
data.It
lists
often
the
data
at
1
standard
pressure
p
and
at298.15K.
Using
the
temperature
dependence
of
heat
capacitywe
can
calculate
the
entropy
change
in
chemical
reaction
at38other
temperature.:
the
differenceThe
standard
entropy
of
reaction,
r
Sbetween
the
molar
entropies
of
the
pure,
separated
productsand
the
pure,
separated
reactants,
all
substances
being
intheir
standard
states
at
the
specified
temperature.Fora
reaction0
νBBr
S
νB
Sm
(B)θ
θr
m
mProducts
Reactants
S
ν
S
ν
Sv
stoichiometric
coefficient39Example
8:Evaluate
thechange
in
standard
molarentropy
of
the
chemical
reaction
below
C2
H5OH
(g,298K
,
p
)
→
C2
H
4
(g,298K
,
p
)
H
2O(g,298K
,
p
)S
(C
H
OH
,
g,298K
)
282.59J
.K
?1.mol
?1Known:
m
2
6S
(C
H
,
g,298K
)
219.45J
.K
1.mol
140m
2
4S
(H O,
g,298K
)
188.74J
.K
1.mol
1m
2Solution:S
S
(C
H
,
g,298K
)
S
(H O,
g,298K
)m
m
2
4
m
2
S
(
C
H
OH
,
g,298K
)
125.60J.K
1
.mol
1m
2
6XI.
Calculation
of
the
entropy
change
of
simplepVT
systems(簡單pVT體系過程熵變的計算)ty
of
single
phase
pu bstance,
oraty
of ponent
system
of
fixedFor
a
givengivencomposit,
t eeds
only
two
independent
state
variablesto
determine
the
state
of
the
system,
so
we
can
use
twoformulaations:S
S
T
pS
T
,V41(1)
From
S=S(T,p)
S
S
T
pdS
T
dT
p
dp(1)dU=TdS-pdVFrom
the
basic
formulaof
closed
systemFrom
H=U+pVdH=dU+d(pV)=TdS-pdV+Vdp+pdV+dpdV=TdS+VdpSo,dS
dH
V
dpT
TA
given ty
of
single
phasepure
substance,
or
of
-ponent
system
of
fixedcomposition
(no
phase
change,
nochemical
reaction),
no
other
work.since
H=H
T
H
H
Introduce
it
intothe
above
equation
T
pdH
T
dT
p
dp42dS
dT
dp
dpT
T
T
p
T1
H
V1
H
T
pCp1
H
V
dpdS
TdT
T T
p
T
p
T
dS
S
dT
S
dp
p
(I)In
comparison
with
S
or
S
1
H
p
T
Relation
of
entropywith
T
(II)
T
CpT
pT
T
p
p
T
p
T
T
S
1
H
V
Relation
of
entropywith
p
(III)43(III)
can
bewritten
as
S
T
p
V
T
T
p
H
Differentiating
bothside
at
constant
p
T
p
T
p
S
V
T
S
T
p
T
pp
H
T
T
p
at
constant
TppTTT
p
S
T
T
p
Differentiate
(II)
H
We
obtain
then
S
V
T
p
S
T
T
p
It
may
change
order
H
T
p
T
p
of
differentiationfor
state
functionsp
p
T
T44
S
CpTRelation
of
S
with
T
p
T
Relation
of
S
with
pp
Tp
p
TT
T
S
1
H
V
V
S
S
Cp
1
H
T
pdS
T
dT
p
dpobtainfinally
TdS
dT
V
dpT
T
pT
T
T
p
T
pdS
Cp
dT
V
dp
nCp,m
dT
V
dp45(2)
From
S=S(T,V)
dS
S
dT
S
dVV
T
V
TdS
dU
p
dVT
TRelation
of
S
with
T
S
CVIn
the
same
waywe
can
justify
:T
V
T
p
Relation
of
S
with
p
V
p
T
T
S
1
U
T
p
T
V
So,CV1
U
dS
dT
pdVT T
p
TTT
T
T
dS
CV
dT
p
dV
nCV
,m
dT
p
dV
V
V46(3)
p,V,T
changes
of
perfect
gasFrom
PV=nRT
P
nR
V
nR
T
V
p
V
p
T
dS
nCp,m
dT
nRdpT
pdS
nCV
,mdT
nRdVT
VWeS
ST,pS
ST,V
47dS
nCV
,mdT
nRdVFromT
VTaking
logarithm
of
both
side
of
pV=nRT,and
operate
the
differentiationp,mV,mand
introduce
C
-C
=R,it
givesdp
dV
dTp
V
TVpp,mV
,mV
,m
C
V
dp
dV
nCdVdS
nCdS
nCV
,mdp
nCp,m
dVp
VRearrangingS
Sp,V48dS
nCV
,mdT
nRdVIfCp,m
,
CV,m
are
constantIntegrating
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版信用證抵押貸款業(yè)務(wù)合作協(xié)議范本3篇
- 2025版土方工程居間代理服務(wù)合同范本下載33篇
- 2025年度股權(quán)分割與繼承處理協(xié)議
- 2025年度房地產(chǎn)合作終止協(xié)議書
- 2025年度旅游文化股權(quán)合作協(xié)議書
- 二零二五年度木工機械操作人員勞務(wù)租賃合同4篇
- 2025年度牧業(yè)產(chǎn)品品牌推廣與營銷合同4篇
- 二零二五年度火鍋餐飲品牌區(qū)域代理授權(quán)協(xié)議
- 二零二五年度餐飲店員工激勵機制與績效考核合同
- 二零二五版環(huán)保技術(shù)入股合作協(xié)議書3篇
- DL-T-1642-2016環(huán)形混凝土電桿用腳扣
- 平安產(chǎn)險陜西省地方財政生豬價格保險條款
- 銅礦成礦作用與地質(zhì)環(huán)境分析
- 30題紀檢監(jiān)察位崗位常見面試問題含HR問題考察點及參考回答
- 詢價函模板(非常詳盡)
- 《AI營銷畫布:數(shù)字化營銷的落地與實戰(zhàn)》
- 麻醉藥品、精神藥品、放射性藥品、醫(yī)療用毒性藥品及藥品類易制毒化學(xué)品等特殊管理藥品的使用與管理規(guī)章制度
- 一個28歲的漂亮小媳婦在某公司打工-被老板看上之后
- 乘務(wù)培訓(xùn)4有限時間水上迫降
- 2023年低年級寫話教學(xué)評語方法(五篇)
- DB22T 1655-2012結(jié)直腸外科術(shù)前腸道準備技術(shù)要求
評論
0/150
提交評論