流體力學往屆課件-08-9chapter華南理工化工學院_第1頁
流體力學往屆課件-08-9chapter華南理工化工學院_第2頁
流體力學往屆課件-08-9chapter華南理工化工學院_第3頁
流體力學往屆課件-08-9chapter華南理工化工學院_第4頁
流體力學往屆課件-08-9chapter華南理工化工學院_第5頁
已閱讀5頁,還剩52頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1.31.3BasicEquationsofFluidand/orprocessInfluiddynamicsfluidsareinmotion.Theyaremovedfromplacetoplacebymeansand/orprocess華南理工大學化工學1.3.2MassBalanceinaFlowingFluid;ContinuityTheprinciplesofphysicsmostusefulintheapplicationsofthe fluidmechanicsaremass-balance,orcontinuity;thelinear-andangular-momentum-balanceequation,andthemechanical-energybalance.華南理工大學化工學院One-dimensionalOne-dimensionalIndiscussingfluidflowitishelpfultovisualize,inthefluidstream,fluidpathscalledstreamlines.Astreamlineisanimaginarypathinamassofflowingfluidsodrawnthatateverypointthevectorofthenetvelocityalongthestreamlineuistangenttothestreamline.華南理工大學化工學院SteadyFlowalongastreamlineisthereforeone-dimensional,andasingletermforvelocityisallthatisneeded.Astreamtubeisatubeoflargeorsmallcrosssectionandofanyconvenientcross-sectionshapethatisentirelyboundedby華南理工大學化工學院SimpleMassConsidertheflowthroughaconduitofcross-sectionalareaSaattheentranceandareaSbatthe‘exit.TheaveragevelocityanddensityattheentranceareVaandρa;attheexittheyareVbandρbaab華南理工大學化工學院Atsteadystatethemassflowinequalsthemassflowout,

(1.3-6Theequationisalsocalledtheequationof華南理工大學化工學院For pressibleabIfthefluidflowsthroughachannelsofcircularcrosssection,thenthevolumetricflowrateisQVS

d4華南理工大學化工學院 ssesthroughtwostationaandb,therelationshipbetweentwovelocitiesVaandd dQ

d dfromV

2 b

da華南理工大學化工學daanddbarediametersofthechannelattheupstreamanddownstreamstations,華南理工大學化工學院1.3.3OverallEnergyBalanceforSteady-stateFlow華南理工大學化工學院Theprincipleoftheconservationofenergytoacontrolvolumeismuchthesamemannerastheprincipleofconservationof華南理工大學化工學院Theenergy-conservationequationwillthenbecombinedwiththe lawofthermodynamicstoobtainthefinaloverallenergy-balanceequation.華南理工大學化工學DerivationofOverallEnergy-BalanceSincemasscarrieswithitassociatedenergyduetoitsposition,motion,orphysicalstate,wewillfindthateachofthesetypesofenergywillappearintheenergybalance.Inaddition,wec sotransportenergyacrosstheboundaryofthesystemwithouttransferringmass華南理工大學化工學lawofthermodynamicsWelawofthermodynamicsE

QW

whereEisthetotalenergyperunitmassoffluid,Qistheheatexchangedbetweensystemandenvironmentperunitmassoffluid,andWistheworkofallkindsdoneperunitmassoffluid,canbedividedintopurelymechanicalshaftworkandthepressure–volumework.華南理工大學化工學TheenergyEinsystemcanbePotentialenergyzgofaunitmassoffluidistheenergyduetothepositionofthemassinagravitationalfieldg,wherezistherelativeheightfromareferenceplane.Kineticenergyu2/2ofaunitmassoffluidistheenergypresentbecauseofmotionofthemass.InternalenergyUofaunitmassofafluidisalloftheotherenergypresent,suchasrotationalandvibrationalenergyinchemicalbonds.華南理工大學化工學院ThetotalenergyofthefluidperunitmassisE

u22

Toobtaintheoverallenergybalance,we Eq.(1.3-9)intotheentitybalanceEq.(1.3- u2 U 2

QW華南理工大學化工學院WisbedividedintopurelymechanicalshaftWsandthepressure–volumeworkWWs EnthalpyHisdefinedHU 華南理工大學化工學院substitutingtheEqs.(2)forWand(3)forintoequation(1),andrearrangingH

2

Q

VThe

inequationaboveiskineticenergyofaunitmassallofwhichisflowinginthesamevelocityV.華南理工大學化工學院Kinetic-energycorrectionWhenthevelocityvariesacrossthestreamcrosssection,thekineticenergyisfoundinthefollowingmanner u2

WhereEktotalflowrateofkineticenergythroughtheentirecrosssection華南理工大學化工學院AssumingconstantdensitywithintheareaS

u3dS AThekineticenergyperunitmassofflowingfluid m

u3dS 2

u3dSS6華南理工大學化工學院ItisconvenienttoeliminatetheintegralbyafactoroperatingV2/2togivethecorrectvalueofthekineticenergyascalculatedfromequation6.thisfactorisdenotedbyαanddefinedbyV2

m

u3dS 2

u3dSSu3dS V3S

華南理工大學化工學院kinetic-energycanbecalculatedfromaveragevelocitybyusingαV2/2.α=2.0forlaminarflowandisabout1.05forhighlyturbulentItisusualtotakeαto1inthe華南理工大學化工學院1.3.4OverallMechanicalEnergyBalanceforSteady-stateFlowSystemThetotalenergybalance,Eq.(4)isnotoftenusedwhenappreciableenthalpychangesoccurorappreciableheatisadded(orsubtracted),sincethekinetic-andpotential-energytermsareusuallysmallandcanbe華南理工大學化工學院Asaresult,whenappreciableheatisaddedorsubtractedorlargeenthalpychangesoccur,themethodsfor ngheatbalancesdescribedaregenerallyused.華南理工大學化工學OverallMechanical-EnergyAmoreusefultypeofenergybalanceforflowingfluidsismechanicalenergy.Mechanicenergyincludestheworkterm,kineticenergy,potentialenergy,andtheflowworkpartoftheenthalpyterm,andexceptfortheheattermsandinternal華南理工大學化工學院toEnergyconvertedtoheatorinternaltoItisconvenienttowriteanenergybalanceintermsofthisloss,Σhf,whichisthesumofallfrictionallossesperunitmass.華南理工大學化工學Forthecaseofsteady-stateflow,whenaunitmassoffluidpassesfrominlettooutlet,theenthalpydifferenceisthesumofheatQexchangedbetweenthesystemandenvironment,frictionallossesΣhf,(convertedintoheat),andpressure-H

Qhf

華南理工大學化工學院Finally,wesubstituteEq.(7)into(4)and1/ρforv,toobtaintheoverallmechanical-energy-balanceequation:hf

p2

V2

(1.3-23Ifthefluidisan pressibleliquid,the es(p2-p1)/ρandEq.(1.3-23)華南理工大學化工學院V2Vhf

p2p1

2

g(z2

)Ws

1.3-25Whenthemechanicalenergyisactuallydeliveredtothefluidbythepump,thenWs<0,rearrangingEq.1.3-252222

hf

p22

華南理工大學化工學院1.3.5DiscussionontheOverallMechanicalEnergyBalanceEquationInthespecialcasewherenomechanicalenergyisadded(WS=0)andfornofriction(Σhf=0),thenEq.(1.3-25) estheBernoulliequation,Eq.(1.3-26). V V 1

22

華南理工大學化工學院Equation(1.3-26)isknownastheBernoulliequationwithoutfriction.Itisaparticularformofamechanicalenergybalance.Eachtermintheequationisascalarandthedimensionsofenergyperunitmass.ThetermsgzandV2/2arethepotentialandkineticenergy,respectively,ofaunitmassoffluid.華南理工大學化工學院Bernoulli'sBernoulli'sequationhassomeFlowisDensityisconstant(whichalsomeansthefluidispressible)FrictionlossesareTheequationrelatesthestatesattwopointsalongasinglestreamline,(notconditionsontwodifferentstreamlines).華南理工大學化工學院TheunitforEq(1.3-26)canbepkg/m3N/m2NmTorepresentthemechanicalworkdonebyforces,externaltostream,onthefluidinpushingitintothetubeortheworkrecoveredfromthefluidleavingthetube。華南理工大學化工學院Equation(1.3-26)isdividedbyg,PP12Z112gP2222gu2ThedimensionpgJfInjouleperunit華南理工大學化工學院Inthesamewaytheequation(1.3-26)ismultipliedbyρg1Z1g P2Z2g u2u222m2NNmmm2Thetermismechanicalworkdonebyforcesinjouleperunitvolumetricfluid.華南理工大學化工學院DiscussionDiscussionofBernoulliEquation(1.3-26)isusefulindealingwiththeflowof pressiblefluids.Equation(1.3-26)showsthatintheabsenceoffriction,whenthevelocityisreduced,eithertheheightabovedatumZorthepressureorbothmustincrease.Whenthevelocityincreases,itdoessoonlyattheexpenseofZorp華南理工大學化工學院TheBernoulliequationhasagreaterrangeofvaliditythanitsderivationimplies.Theprincipleofconservationofenergypermitstheextensionoftheequationtopotentialflowtakingplaceincurvedstreamtubeofvariablecrosssection.Theequationcanbemodifiedforuseinboundarylayerflow.華南理工大學化工學院Itisessentialtochooseupstreamanddownstreamstation.Stationaandbarechosenonthebasisofconvenienceandareusuallytakenatlocationswherethemostinformationaboutpressure,velocity,andheightis華南理工大學化工學院Bernoulli'sequationhasfollowingrestrictionsThetotalenergybalanceisnotoftenusedwhen( changesoccuror( )isexchangedbetweenthesystemandtheenvironment.華南理工大學化工學院Mechanicenergyincludes ),( ),and( )oftheenthalpyterm.Whenthevelocityincreases,itdoessoonlyattheexpenseof( kinetic-energycanbecalculatedfromaveragevelocitybyusingαV2/2.α=(2.0)forlaminarflowandisabout(1.05)forhighlyturbulent華南理工大學化工學院華南理工大學化工學院WaterfromthereservoirflowsthroughthepipeofdiameterD,whichthethroatdiameterisd.theratioofDtodis2,theverticaldistancehbetweenthesurfaceofliquidin Aandtheaxisofthepipeis1m.HowmuchtheHneededifthewater Aisleftto throatoftheAssumingthat AflowisapotentialA華南理工大學化工學華南理工大學化工學院 ticalpipecarryingwater,pressuregaugesareinsertedatpointsAandBwherethepipediametersare0.15mand0.075mrespectively.ThepointBis2.5mbelowAandwhentheflowratedownthepipeis0.02m3/s,thepressureatBis14715N/m2greaterthanthatatA.華南理工大學化工學AssumingthelossesinthepipebetweenAanducanbeexpressedasfindthevalueof

whereuisthevelocityat2IfthegaugesatAandBarereplacedbytubesfilledwithwaterandconnectedtoaU-tubecontainingmercuryofrelativedensity13.6,giveasketchshowinghowthelevelsinthetwolimbsoftheU-tubedifferandcalculatethevalueofthisdifferenceinmetres.[k=0.344,華南理工大學化工學院ProblemProblem華南理工大學化工學院Movingthewaterfromonecontainerintotheotherplacebygravityheadwithapipeofconstantcross-sectionalareaisshownasinfigure.find(1)ThevelocityatstationThepressureat ThemechanicalenergyinstationA,B,CAssumingthatthewaterflowsthroughthepipewithoutfrictionlosses.

B

D華南理工大學化工學院華南理工大學化工學院HereisanexampleofusingtheBernoulliequationtodeterminepressureandvelocityatwithinacontractingandexpandingpipe.Thetubeishorizontal,withz1=z2soBernoulligivesusthefollowingequationforpressureatsection2:Sowecannowcalculatethepressureatsection2華南理工大學化工學院Afluidofconstantdensity=960kg/m3isflowingsteadilythroughtheabovetube.Thediametersatthesectionsared1=100 andd2=80mm.Thegaugepr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論