版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
AGeometricPerspectiveonMachineLearning何曉飛浙江大學(xué)計(jì)算機(jī)學(xué)院1AGeometricPerspectiveonMacMachineLearning:theproblemf何曉飛Information(trainingdata)
f:X→YXandYareusuallyconsideredasaEuclideanspaces.2MachineLearning:theproblemfManifoldLearning:geometricperspectiveThedataspacemaynotbeaEuclideanspace,butanonlinearmanifold.?
Euclideandistance.?
fisdefinedonEuclideanspace.?ambientdimension? geodesicdistance.?fisdefinedonnonlinearmanifold.?manifolddimension.instead…3ManifoldLearning:geometricpManifoldLearning:thechallengesThemanifoldisunknown!Wehaveonlysamples!HowdoweknowMisasphereoratorus,orelse?HowtocomputethedistanceonM?
versusThisisunknown:Thisiswhatwehave:??orelse…?TopologyGeometryFunctionalanalysis4ManifoldLearning:thechallenManifoldLearning:currentsolutionFindaEuclideanembedding,andthenperformtraditionallearningalgorithmsintheEuclideanspace.5ManifoldLearning:currentsolSimplicity6Simplicity6Simplicity7Simplicity7Simplicityisrelative8Simplicityisrelative8Manifold-basedDimensionalityReductionGivenhighdimensionaldatasampledfromalowdimensionalmanifold,howtocomputeafaithfulembedding?Howtofindthemappingfunction?Howtoefficientlyfindtheprojectivefunction?9Manifold-basedDimensionalityAGoodMappingFunctionIfxiandxjareclosetoeachother,wehopef(xi)andf(xj)preservethelocalstructure(distance,similarity…)k-nearestneighborgraph:Objectivefunction:Differentalgorithmshavedifferentconcerns10AGoodMappingFunctionIfxiLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.11LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.12LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:13LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:LPPfindsalinearapproximationtononlinearmanifold,whilepreservingthelocalgeometricstructure.14LocalityPreservingProjectionManifoldofFaceImagesExpression(Sad>>>Happy)
Pose(Right>>>Left)15ManifoldofFaceImagesExpressManifoldofHandwrittenDigitsThicknessSlant16ManifoldofHandwrittenDigitsLearningtarget:TrainingExamples:LinearRegressionModelActiveandSemi-SupervisedLearning:AGeometricPerspective17Learningtarget:ActiveandSemGeneralizationErrorGoalofRegression
Obtainalearnedfunctionthatminimizesthegeneralizationerror(expectederrorforunseentestinputpoints).MaximumLikelihoodEstimate18GeneralizationErrorGoalofReGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:19Gauss-MarkovTheoremForagiveGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:Good!Bad!20Gauss-MarkovTheoremForagiveExperimentalDesignMethodsThreemostcommonscalarmeasuresofthesizeoftheparameter(w)covariancematrix:A-optimalDesign:determinantofCov(w).D-optimalDesign:traceofCov(w).E-optimalDesign:maximumeigenvalueofCov(w).Disadvantage:thesemethodsfailtotakeintoaccountunmeasured(unlabeled)datapoints.21ExperimentalDesignMethodsThrManifoldRegularization:Semi-SupervisedSettingMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?22ManifoldRegularization:Semi-Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingManifoldRegularization:Semi-SupervisedSetting23Measured(labeled)points:disMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingactivelearningactivelearning+semi-supervsedlearningManifoldRegularization:Semi-SupervisedSetting24Measured(labeled)points:disUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructure25UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure26UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG27UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG28UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG29UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG30UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG31UnlabeledDatatoEstimateGeoLaplacianRegularizedLeastSquare(BelkinandNiyogi,2006)LinearobjectivefunctionSolution32LaplacianRegularizedLeastSqActiveLearningHowtofindthemostrepresentativepointsonthemanifold?33ActiveLearningHowtofindtheObjective:Guidetheselectionofthesubsetofdatapointsthatgivesthemostamountofinformation.Experimentaldesign:selectsamplestolabelManifoldRegularizedExperimentalDesignSharethesameobjectivefunctionasLaplacianRegularizedLeastSquares,simultaneouslyminimizetheleastsquareerroronthemeasuredsamplesandpreservethelocalgeometricalstructureofthedataspace.ActiveLearning34Objective:Guidetheselection
,Inordertomaketheestimatorasstableaspossible,thesizeofthecovariancematrixshouldbeassmallaspossible.D-optimality:minimizethedeterminantofthecovariancematrixAnalysisofBiasandVariance35
Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.UpdateManifoldRegularizedExperimentalDesignWhereareselectedfromThealgorithm36ManifoldRegularizedExperimenConsiderfeaturespaceFinducedbysomenonlinearmappingφ,and<f(xi),f(xj)>=K(xi,xi).K(·,·):positivesemi-definitekernelfunctionRegressionmodelinRKHS:ObjectivefunctioninRKHS:NonlinearGeneralizationinRKHS37ConsiderfeaturespaceFinducSelectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.UpdateKernelGraphRegularizedExperimentalDesignwhereareselectedfromNonlinearGeneralizationinRKHS38KernelGraphRegularizedExperASyntheticExampleA-optimalDesignLaplacianRegularizedOptimalDesign39ASyntheticExampleA-optimalDASyntheticExampleA-optimalDesignLaplacianRegularizedOptimalDesign40ASyntheticExampleA-optimalDApplicationtoimage/videocompression41Applicationtoimage/videocomVideocompression42Videocompression42TopologyCanwealwaysmapamanifoldtoaEuclideanspacewithoutchangingitstopology?…?43TopologyCanwealwaysmapamaTopologySimplicialComplexHomologyGroupBettiNumbersEulerCharacteristicGoodCoverSamplePointsHomotopyNumberofcomponents,dimension,…44TopologySimplicialComplexHomoTopologyTheEulerCharacteristicisatopologicalinvariant,anumberthatdescribesoneaspectofatopologicalspace’sshapeorstructure.1-2012TheEulerCharacteristicofEuclideanspaceis1!0045TopologyTheEulerCharacteristChallengesInsufficientsamplepointsChoosesuitableradiusHowtoidentifynoisyholes(userinteraction?)Noisyholehomotopyhomeomorphsim46ChallengesInsufficientsampleQ&A4747AGeometricPerspectiveonMachineLearning何曉飛浙江大學(xué)計(jì)算機(jī)學(xué)院48AGeometricPerspectiveonMacMachineLearning:theproblemf何曉飛Information(trainingdata)
f:X→YXandYareusuallyconsideredasaEuclideanspaces.49MachineLearning:theproblemfManifoldLearning:geometricperspectiveThedataspacemaynotbeaEuclideanspace,butanonlinearmanifold.?
Euclideandistance.?
fisdefinedonEuclideanspace.?ambientdimension? geodesicdistance.?fisdefinedonnonlinearmanifold.?manifolddimension.instead…50ManifoldLearning:geometricpManifoldLearning:thechallengesThemanifoldisunknown!Wehaveonlysamples!HowdoweknowMisasphereoratorus,orelse?HowtocomputethedistanceonM?
versusThisisunknown:Thisiswhatwehave:??orelse…?TopologyGeometryFunctionalanalysis51ManifoldLearning:thechallenManifoldLearning:currentsolutionFindaEuclideanembedding,andthenperformtraditionallearningalgorithmsintheEuclideanspace.52ManifoldLearning:currentsolSimplicity53Simplicity6Simplicity54Simplicity7Simplicityisrelative55Simplicityisrelative8Manifold-basedDimensionalityReductionGivenhighdimensionaldatasampledfromalowdimensionalmanifold,howtocomputeafaithfulembedding?Howtofindthemappingfunction?Howtoefficientlyfindtheprojectivefunction?56Manifold-basedDimensionalityAGoodMappingFunctionIfxiandxjareclosetoeachother,wehopef(xi)andf(xj)preservethelocalstructure(distance,similarity…)k-nearestneighborgraph:Objectivefunction:Differentalgorithmshavedifferentconcerns57AGoodMappingFunctionIfxiLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.58LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.59LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:60LocalityPreservingProjectionLocalityPreservingProjectionsPrinciple:ifxiandxjareclose,thentheirmapsyiandyjarealsoclose.Mathematicalformulation:minimizetheintegralofthegradientoff.Stokes’Theorem:LPPfindsalinearapproximationtononlinearmanifold,whilepreservingthelocalgeometricstructure.61LocalityPreservingProjectionManifoldofFaceImagesExpression(Sad>>>Happy)
Pose(Right>>>Left)62ManifoldofFaceImagesExpressManifoldofHandwrittenDigitsThicknessSlant63ManifoldofHandwrittenDigitsLearningtarget:TrainingExamples:LinearRegressionModelActiveandSemi-SupervisedLearning:AGeometricPerspective64Learningtarget:ActiveandSemGeneralizationErrorGoalofRegression
Obtainalearnedfunctionthatminimizesthegeneralizationerror(expectederrorforunseentestinputpoints).MaximumLikelihoodEstimate65GeneralizationErrorGoalofReGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:66Gauss-MarkovTheoremForagiveGauss-MarkovTheoremForagivenx,theexpectedpredictionerroris:Good!Bad!67Gauss-MarkovTheoremForagiveExperimentalDesignMethodsThreemostcommonscalarmeasuresofthesizeoftheparameter(w)covariancematrix:A-optimalDesign:determinantofCov(w).D-optimalDesign:traceofCov(w).E-optimalDesign:maximumeigenvalueofCov(w).Disadvantage:thesemethodsfailtotakeintoaccountunmeasured(unlabeled)datapoints.68ExperimentalDesignMethodsThrManifoldRegularization:Semi-SupervisedSettingMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?69ManifoldRegularization:Semi-Measured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingManifoldRegularization:Semi-SupervisedSetting70Measured(labeled)points:disMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure?randomlabelingactivelearningactivelearning+semi-supervsedlearningManifoldRegularization:Semi-SupervisedSetting71Measured(labeled)points:disUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructure72UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructure73UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG74UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG75UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG76UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG77UnlabeledDatatoEstimateGeoUnlabeledDatatoEstimateGeometryMeasured(labeled)points:discriminantstructureUnmeasured(unlabeled)points:geometricalstructureComputenearestneighborgraphG78UnlabeledDatatoEstimateGeoLaplacianRegularizedLeastSquare(BelkinandNiyogi,2006)LinearobjectivefunctionSolution79LaplacianRegularizedLeastSqActiveLearningHowtofindthemostrepresentativepointsonthemanifold?80ActiveLearningHowtofindtheObjective:Guidetheselectionofthesubsetofdatapointsthatgivesthemostamountofinformation.Experimentaldesign:selectsamplestolabelManifoldRegularizedExperimentalDesignSharethesameobjectivefunctionasLaplacianRegularizedLeastSquares,simultaneouslyminimizetheleastsquareerroronthemeasuredsamplesandpreservethelocalgeometricalstructureofthedataspace.ActiveLearning81Objective:Guidetheselection
,Inordertomaketheestimatorasstableaspossible,thesizeofthecovariancematrixshouldbeassmallaspossible.D-optimality:minimizethedeterminantofthecovariancematrixAnalysisofBiasandVariance82
Selectthefirstdatapointsuchthatismaximized,Supposekpointshavebeenselected,choosethe(k+1)thpointsuchthat.UpdateManifoldRegularizedExperimentalDesignWhere
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 升旗儀式后的演講5篇
- 有關(guān)營銷實(shí)習(xí)報(bào)告5篇
- 銀行個(gè)人服務(wù)心得體會(8篇)
- 散裝熟食購售協(xié)議書范本
- 商務(wù)合同續(xù)簽公函范本
- 環(huán)衛(wèi)部環(huán)衛(wèi)工人作業(yè)規(guī)范培訓(xùn)
- 音樂老師實(shí)習(xí)總結(jié)5篇
- 感恩老師演講稿模板合集(31篇)
- 墊資施工合同環(huán)保治理
- 喀什招投標(biāo)項(xiàng)目融資方案
- 隨動曲軸磨床
- PurchaseOrder模板
- 施工進(jìn)度計(jì)劃-橫道圖
- 清產(chǎn)核資基礎(chǔ)報(bào)表(模板)
- 垂直循環(huán)立體車庫設(shè)計(jì)
- 三年級語文家長會(課堂PPT)
- 氫氧化鈉標(biāo)準(zhǔn)溶液的配制和標(biāo)定.
- 供貨保障方案及措施兩篇范文
- 金屬構(gòu)件失效分析精簡版
- 雷諾爾JJR系列軟起動器說明書
- 中國聯(lián)通GPON設(shè)備技術(shù)規(guī)范
評論
0/150
提交評論