版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.馬林●梅森是17世紀法國著名的數(shù)學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數(shù)論方面的這一貢獻,將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是()A.3 B.4 C.5 D.62.在直角梯形中,,,,,點為上一點,且,當?shù)闹底畲髸r,()A. B.2 C. D.3.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.4.已知集合,,則()A. B.C.或 D.5.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.6.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.7.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.8.已知,且,則()A. B. C. D.9.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.10.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18011.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點所在的區(qū)間是()A. B. C. D.12.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}二、填空題:本題共4小題,每小題5分,共20分。13.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.14.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.15.函數(shù)的值域為_________.16.集合,,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.18.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.19.(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實數(shù)a,b滿足1a+120.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,21.(12分)已知函數(shù),設為的導數(shù),.(1)求,;(2)猜想的表達式,并證明你的結論.22.(10分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.2、B【解析】
由題,可求出,所以,根據(jù)共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.3、B【解析】
根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎題.4、D【解析】
首先求出集合,再根據(jù)補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.5、A【解析】
設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉(zhuǎn)化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.6、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.7、D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數(shù)據(jù)知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.8、B【解析】分析:首先利用同角三角函數(shù)關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關于的式子,代入從而求得結果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關同角三角函數(shù)關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數(shù)關系式求解,也可以結合三角函數(shù)的定義式求解.9、B【解析】
根據(jù)已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數(shù)關系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.10、A【解析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.11、B【解析】
根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數(shù)值正負,即可求出結論.【詳解】∵,結合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因為,所以函數(shù)的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數(shù)的圖象及函數(shù)的零點,屬于基礎題.12、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意建立平面直角坐標系,設三角形各點的坐標,依題意求出,,,的表達式,再進行數(shù)量積的運算,最后求和即可得出結果.【詳解】解:以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,,,,則,,,設,,,即點的坐標為,則,,,所以故答案為:【點睛】本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.14、【解析】
設直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關系,屬于中檔題.15、【解析】
利用換元法,得到,利用導數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導數(shù)求解函數(shù)的單調(diào)性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.16、【解析】
分析出集合A為奇數(shù)構成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設,計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設,,則,.,解得或(舍去),.(2)證明:由(1)可得,設,所以直線的方程為,當時,,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.18、(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當時,,即,此時無解;當時,;當時,.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當且僅當時等號成立.的最小值為4.【點睛】本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.19、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解析】
(Ⅰ)由題意結合不等式的性質(zhì)零點分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當x>1時,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當-2≤x≤1時,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當x<-2時,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當且僅當-2≤x≤1時,等號成立.∴f(x)的最小值m=3.∴[(即2a當且僅當2a×1又1a+1b=∴2a【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,絕對值三角不等式求最值的方法等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】
(1)根據(jù)散點圖的特點,可得更適合;(2)先建立關于的回歸方程,再得出關于的回歸方程;(3)寫出函數(shù)關系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關于開關旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據(jù)題意,設,則煤氣用量,當且僅當時,等號成立,即時,煤氣用量最小.【點睛】此題考查根據(jù)題意求回歸方程,利用線性回歸方程的求法得解,結合基本不等式求最值.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天然氣地理信息系統(tǒng)的應用與發(fā)展考核試卷
- 智慧城市的金融保險實踐考核試卷
- 稅收政策與企業(yè)盈利
- 路橋工程一級建造師招聘協(xié)議
- 文化中心花園施工合同范本
- 環(huán)保設備倉庫租賃協(xié)議范本
- 城市道路廣告牌施工合同
- 藥品生產(chǎn)特殊管理清潔生產(chǎn)
- 交通運輸招投標合同模板
- 科研院所水井租賃協(xié)議
- 2024年房地產(chǎn)開發(fā)商與裝修公司裝修合同
- 【單元練】(必考題)高中物理必修3第十三章【電磁感應與電磁波初步】習題(答案解析)
- 二年級排球教案
- 小數(shù)乘除法豎式計算專項練習題大全(每日一練共15份)
- 天津市和平區(qū)2024-2025學年九年級上學期期中考試英語試題
- 2024版抗菌藥物DDD值速查表
- 小學二年級數(shù)學上冊期中試卷(全套)
- DB11T 1580-2018 生產(chǎn)經(jīng)營單位安全生產(chǎn)應急資源調(diào)查規(guī)范
- 各省中國鐵路限公司2024招聘(目前38183人)高頻難、易錯點500題模擬試題附帶答案詳解
- 猜想04整式的乘法與因式分解(易錯必刷30題10種題型專項訓練)
- 大學實訓室虛擬仿真平臺網(wǎng)絡VR實訓室方案(建筑學科)
評論
0/150
提交評論