版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2011年1月全國自考概率論與數(shù)理統(tǒng)計(jì)(經(jīng)管類)試題全國2011年4月高等教育自學(xué)考試概率論與數(shù)理統(tǒng)計(jì)(經(jīng)管類)試題課程代碼:04183一、單項(xiàng)選擇題(本大題共10小題,每小題2分,共20分)在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請將其代碼填寫在題后的括號內(nèi)。錯(cuò)選、多選或未選均無分。1.設(shè)A,B,C為隨機(jī)事件,則事件“A,B,C都不發(fā)生”可表示為()A.ABC.ABC D.2.設(shè)隨機(jī)事件A與B相互獨(dú)立,且P(A)=15,P(B)=35,則P(AA.325 B.C.45 D.3.設(shè)隨機(jī)變量X~B(3,0.4),則P{X≥1}=()A.0.352 B.0.432C.0.784 D.0.936XX-125P0.20.350.454.已知隨機(jī)變量X的分布律為,則P{-2<X≤4}=()A.0.C.0.55 D.0.85.設(shè)隨機(jī)變量X的概率密度為f(x)=12A.-3,2 B.-3,2C.3,2 D.3,26.設(shè)二維隨機(jī)變量(X,Y)的概率密度為f(x,y)=c,0A.14 B.C.2 D.47.設(shè)隨機(jī)變量X~N(-1,22),Y~N(-2,32),且X與Y相互獨(dú)立,則X-Y~()A.N(-3,-5) B.N(-3,13)C.N(1,13) D.N(1,13)8.設(shè)X,Y為隨機(jī)變量,D(X)=4,D(Y)=16,Cov(X,Y)=2,則ρXY=()A.132 B.C.18 D.9.設(shè)隨機(jī)變量X~χ2(2),Y~χ2(3),且X與Y相互獨(dú)立,則X/2Y/3A.χ2(5) B.t(5)C.F(2,3) D.F(3,2)10.在假設(shè)檢驗(yàn)中,H0為原假設(shè),則顯著性水平α的意義是()A.P{拒絕H0|H0為真} B.P{接受H0|H0為真}C.P{接受H0|H0不真} D.P{拒絕H0|H0不真}二、填空題(本大題共15小題,每小題2分,共30分)請?jiān)诿啃☆}的空格中填上正確答案。錯(cuò)填、不填均無分。11.設(shè)A,B為隨機(jī)事件,P(A)=0.6,P(B|A)=0.3,則P(AB)=______.12.設(shè)隨機(jī)事件A與B互不相容,P(A)=0.6,P(A∪B)=0.8,則P(B)=______.13.設(shè)隨機(jī)變量X服從參數(shù)為3的泊松分布,則P{X=2}=______.14.設(shè)隨機(jī)變量X~N(0,42),且P{X>1}=0.4013,Φ(x)為標(biāo)準(zhǔn)正態(tài)分布函數(shù),則Φ(0.25)=_____.15.設(shè)二維隨機(jī)變量(X,Y)的分布律為YX01010.10.80.10則P{X=0,Y=1}=______.16.設(shè)二維隨機(jī)變量(X,Y)的概率密度為f(x,y)=1,0≤x17.設(shè)隨機(jī)變量X與Y相互獨(dú)立,X在區(qū)間[0,3]上服從均勻分布,Y服從參數(shù)為4的指數(shù)分布,則D(X+Y)=______.18.設(shè)X為隨機(jī)變量,E(X+3)=5,D(2X)=4,則E(X2)=______.19.設(shè)隨機(jī)變量X1,X2,…,Xn,…相互獨(dú)立同分布,且E(Xi)=μ,DXi=20.設(shè)隨機(jī)變量X-χ2(n),χα2(n)是自由度為n的χ2分布的α21.設(shè)總體X~N(μ,64),x1,x2,…,x8為來自總體X的一個(gè)樣本,x為樣本均值,則D(x)=______.22.設(shè)總體X~N(μ,σ2),x1,x2,…,xn為來自總體X的一個(gè)樣本,x為樣本均值,s2為樣本方差,則23.設(shè)總體X的概率密度為f(x;θ),其中θ為未知參數(shù),且E(X)=2θ,x1,x2,…,xn為來自總體X的一個(gè)樣本,x為樣本均值.若c24.設(shè)總體X~N(μ,σ2),σ2已知,x1,x2,…,xn為來自總體X的一個(gè)樣本,x為樣本均值,則參數(shù)25.設(shè)總體X~N(μ,4),x1,x2,…,x16為來自總體X的一個(gè)樣本,x為樣本均值,則檢驗(yàn)假設(shè)H0:μ=1,三、計(jì)算題(本大題共2小題,每小題8分,共16分)26.盒中有3個(gè)新球、1個(gè)舊球,第一次使用時(shí)從中隨機(jī)取一個(gè),用后放回,第二次使用時(shí)從中隨機(jī)取兩個(gè),事件A表示“第二次取到的全是新球”,求P(A).27.設(shè)總體X的概率密度為fx;θ=2θx2θ-1,0<x<10,其他,,其中未知參數(shù)θ>0,x1,x2,…,x四、綜合題(本大題共2小題,每小題12分,共24分)28.設(shè)隨機(jī)變量x的概率密度為f求:(1)常數(shù)a,b;(2)X的分布函數(shù)F(x);(3)E(X).29.設(shè)二維隨機(jī)變量(X,Y)的分布律為YX-303-30300.200.20.20.200.20求:(1)(X,Y)分別關(guān)于X,Y的邊緣分布律;(2)D(X),D(Y),Cov(X,Y).五、應(yīng)用題(10分)30.某種裝置中有兩個(gè)相互獨(dú)立工作的電子元件,其中一個(gè)電子元件的使用壽命X(單位:小時(shí))服從參數(shù)11000的指數(shù)分布,另一個(gè)電子元件的使用壽命Y(單位:小時(shí))服從參數(shù)12000的指數(shù)分布.試求:(1)(X,Y)的概率密度;(2)E(X),E(Y2011年4月《概率論與數(shù)理統(tǒng)計(jì)(經(jīng)管類)》參考答案04183概率論經(jīng)管:1-10ABCCB
ABDCA
110.18
12
2/3
13
9/[2(e的三次方)]
14、0.5987
15、0.1
16、0.5
17、13\16
18、5
19、0.5
20、1-a
21、8
22、t(n-1)23、0.5
24、【x(x上面一橫線)-u(a/2)v/根號n
x(x上面一橫線)+u(a/2)v/根號n】
25、t=[x(x上面一橫線)-u]/(s/根號n)
26.1/2
28
積分區(qū)間0到2(ax+b)dx=1
2(a+b)=1
積分區(qū)間2到4(ax+b)dx=1/4
由上述得a=-1/2
b=1
F(X)=0,X小于等于0時(shí);1,x大于等于2時(shí);-1/4x的平方+x
x大于0小于2時(shí)
E(X)=2/3
2011年10月自考概率論與數(shù)理統(tǒng)計(jì)(經(jīng)管類
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)生黨課課件教學(xué)課件
- 神經(jīng)內(nèi)科電場治療方案
- 新人入職培訓(xùn)規(guī)章制度
- 糖尿病傷口處理
- 眼耳鼻喉科護(hù)理查房
- 老年病科科普講解大賽
- 博物館奇案教案反思
- 化學(xué)肥料說課稿
- 好玩的竹梯說課稿
- 過秦論的說課稿
- 部編版語文三年級上冊單元知識點(diǎn)梳理歸納
- TS16949推行計(jì)劃
- 關(guān)于統(tǒng)一使用公司手機(jī)號碼的通知
- 標(biāo)準(zhǔn)吞咽功能評價(jià)量表(SSA)2頁
- 2009年勒流街道小學(xué)即席作文競賽獲獎結(jié)果(精)
- 三年級地方課程半島工程和溫州大橋教材
- 人民醫(yī)院便民惠民措施服務(wù)工作開展情況總結(jié)
- 用友華表伙伴商務(wù)手冊.
- 大學(xué)生健康人格與心理健康PPT課件
- 有限空間安全操作責(zé)任協(xié)議書(3頁)
- 網(wǎng)格化管理架構(gòu)圖新
評論
0/150
提交評論