




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BASICAOUSTICAS(6)TransverseMotion-TheVibratingStringBASICAOUSTICAS(6)Transver1VibrationsofextendedsystemsInthepreviouschapteritwasassumedthatthemassmovesasarigidbodysothatitcouldbeconsideredconcentratedatasinglepoint.However,mostvibratingbodiesarenotsosimple.Aloudspeakerhasitsmassdistributedoveritssurfacesothattheconedoesmoveasaunit.Apianosting.Vibrationsofextendedsystems2Aflexiblestringundertensionprovidestheeasiestexampleforvisualizinghowwavesworkanddevelopingphysicalconceptsandtechniquesfortheirstudy.Thevibratingstringisinterestingbothforitsownsake(asasourceofsoundonaguitarorviolin)andasamodelforthemotionofothersystems.Westudyfreemotionofastring.Theproceduresweusewillapplyinourlaterstudyofotherkindsofwaves.Aflexiblestringundertensio3FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)4FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)5Initialdisturbanceatt=0
Separatedisturbanceatt1>>0
Separatedisturbanceatt2>t1PropagationofatransversedisturbancealongastretchedstringInitialdisturbanceatt=0Sep6ItisobservedthatthespeedofpropagationofallsmalldisplacementsisindependentoftheshapeandamplitudeoftheinitialdisplacementanddependsonlyonthemassperunitlengthofthestringanditstensionExperimentandtheoryshowthatthisseedisgivenbyWherecisinm/s,TisthetensioninNandplisthemassperunitlengthofthestringinkg/m.Itisobservedthatthespeed7TheequationofmotionAssumeastringofuniformlineardensityplandnegligiblestiffness,stretchedtoatensionTgreatenoughthattheeffectsofgravitycanbeneglected.Alsoassumethattherearenodissipativeforces(suchasthoseassociatedwithfrictionorwiththeradiationofacousticenergy)TheequationofmotionAssumea8Fig.Aisolatesaninfinitesimalelementofthestringwithequilibriumpositionxandequilibriumlengthdx.Whenthestringisatrest,thetensionsatxandatx+dxarepreciselyequalinmagnitudeandoppositeindirection,makingzerototalforce.
Fig.AFig.Aisolatesaninfinitesi9If
(thetransversedisplacementofthiselementfromitsequilibriumposition)issmall,thetensionTremainsconstantalongthestringandthedifferencebetweentheComponentofthetensionatthetwoendsoftheelementis
If(thetransversedispl10Ifissmall,
WegetApplyingtheTaylor’sseriesexpansionIfissmall,WegetApplyingth11Sincethemassoftheelementispldxanditsaccelerationinthe
directionis
Newton’slawgivesThenyieldstheequationofmotionwheretheconstantc2isdefinedbySincethemassoftheelement12GENERALSOLUTIONOFTHEEQUATIONGOFMOTIONEquation(2-1)isasecond-order,partialdifferentialequation.Itscompletesolutioncontainstwoarbitraryfunctions.Themostgeneralsolutionis
arecompletelyarbitraryfunctionsofarguments(ct-x)and(ct+x),respectively.Possibleexamplesofsucharbitraryfunctionsincludelog(ct+x),(ct+x)2,sin[w(t+x/c)],etal.GENERALSOLUTIONOFTHEEQUATI13Wecanprovethatanyfunctionofargument(ct-x)isasolutionofthewaveequation(2-1).Similarly,itcanbeshownthatf2(ct+x)isalsoasolution.Thesumofthesetwofunctionsisthecompletegeneralsolutionoftheequationofmotion.Wecanprovethatanyfunction14Considerthesolutionf1(ct-x).Attimet1thetransversedisplacementofthestringisgivenbyf1(ct-x).AssuggestedbyFig.B
x1x2Atalatertimet2theshapeofthestringwillbegivenbyf1(ct2-x2)
Considerthesolutionf1(ct-x)15Theparticulartransversedisplacementf1(ct1-x1)ofthestringthatwasfoundatx1whent=t1mustbefoundatapositionx2whent=t2wherect1-x1=ct2-x2Thus,thisparticulardisplacementhasmovedadistancex2-x1=c(t2-t1)totheright.Theparticulartransversedisp16Sincetheparticulardisplacementchosenwasarbitrary,anytransversedisplacementmustmovetotherightwiththesamespeed.Thismeansthattheshapeofthedisturbanceremainsunchangedandtravelsalongthestringtotherightataconstantspeedc.Thefunctionf1(ct-x)representsawavetravelinginthe+xdirection,calledwavefunction.Sincetheparticulardisplacem17STANDINGWAVESConsidernowastringoffinitelengthL.Describingallmotionsofthisstringintermsoftravelingwavesremainspossibleinprinciple.Becauseofrepeatedreflectionsbetweenthetwoends,thatisusuallynotthemosthelpfuldescription.Wefinditmoreconvenienttostudystandingwaves.STANDINGWAVESConsidernowas18FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)19Welimittosolutionsthatmeettheproperboundaryconditions.Supposespecificallythatbothendsofthestringarefixed,thatis:Substitutetheinitialconditions,andobtainWelimittosolutionsthatmee20TheonlywaytomeetthefirstconditionistosetA=0.ThenthesecondconditionallowstheamplitudeBtobeanythingaslongaswerequirethatul/cbeanintegralmultipleof.Theonlywaytomeetthefirst21Weuse
Weuse22Normal-modefrequenciesthatformaharmonicseriesasaboveareaveryspecialfeatureofone-dimensionalsystemswhosepropertiesareuniformeverywherealongtheirlength.Normal-modefrequenciesthatf23Anysumofthesesinusoidalstandingwavesisalsoasolutionofboththeequationofmotionandtheboundaryconditions.SowecanrepresentverygeneralmotionsofastringfixedatbothendsbyAnysumofthesesinusoidalst24HomeworkHowtodeterminetheamplitudesandphasewheninitialconditionshavebeenspecified.(textbookP71-72)HomeworkHowtodeterminethea25
BASICAOUSTICAS(6)TransverseMotion-TheVibratingStringBASICAOUSTICAS(6)Transver26VibrationsofextendedsystemsInthepreviouschapteritwasassumedthatthemassmovesasarigidbodysothatitcouldbeconsideredconcentratedatasinglepoint.However,mostvibratingbodiesarenotsosimple.Aloudspeakerhasitsmassdistributedoveritssurfacesothattheconedoesmoveasaunit.Apianosting.Vibrationsofextendedsystems27Aflexiblestringundertensionprovidestheeasiestexampleforvisualizinghowwavesworkanddevelopingphysicalconceptsandtechniquesfortheirstudy.Thevibratingstringisinterestingbothforitsownsake(asasourceofsoundonaguitarorviolin)andasamodelforthemotionofothersystems.Westudyfreemotionofastring.Theproceduresweusewillapplyinourlaterstudyofotherkindsofwaves.Aflexiblestringundertensio28FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)29FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)30Initialdisturbanceatt=0
Separatedisturbanceatt1>>0
Separatedisturbanceatt2>t1PropagationofatransversedisturbancealongastretchedstringInitialdisturbanceatt=0Sep31ItisobservedthatthespeedofpropagationofallsmalldisplacementsisindependentoftheshapeandamplitudeoftheinitialdisplacementanddependsonlyonthemassperunitlengthofthestringanditstensionExperimentandtheoryshowthatthisseedisgivenbyWherecisinm/s,TisthetensioninNandplisthemassperunitlengthofthestringinkg/m.Itisobservedthatthespeed32TheequationofmotionAssumeastringofuniformlineardensityplandnegligiblestiffness,stretchedtoatensionTgreatenoughthattheeffectsofgravitycanbeneglected.Alsoassumethattherearenodissipativeforces(suchasthoseassociatedwithfrictionorwiththeradiationofacousticenergy)TheequationofmotionAssumea33Fig.Aisolatesaninfinitesimalelementofthestringwithequilibriumpositionxandequilibriumlengthdx.Whenthestringisatrest,thetensionsatxandatx+dxarepreciselyequalinmagnitudeandoppositeindirection,makingzerototalforce.
Fig.AFig.Aisolatesaninfinitesi34If
(thetransversedisplacementofthiselementfromitsequilibriumposition)issmall,thetensionTremainsconstantalongthestringandthedifferencebetweentheComponentofthetensionatthetwoendsoftheelementis
If(thetransversedispl35Ifissmall,
WegetApplyingtheTaylor’sseriesexpansionIfissmall,WegetApplyingth36Sincethemassoftheelementispldxanditsaccelerationinthe
directionis
Newton’slawgivesThenyieldstheequationofmotionwheretheconstantc2isdefinedbySincethemassoftheelement37GENERALSOLUTIONOFTHEEQUATIONGOFMOTIONEquation(2-1)isasecond-order,partialdifferentialequation.Itscompletesolutioncontainstwoarbitraryfunctions.Themostgeneralsolutionis
arecompletelyarbitraryfunctionsofarguments(ct-x)and(ct+x),respectively.Possibleexamplesofsucharbitraryfunctionsincludelog(ct+x),(ct+x)2,sin[w(t+x/c)],etal.GENERALSOLUTIONOFTHEEQUATI38Wecanprovethatanyfunctionofargument(ct-x)isasolutionofthewaveequation(2-1).Similarly,itcanbeshownthatf2(ct+x)isalsoasolution.Thesumofthesetwofunctionsisthecompletegeneralsolutionoftheequationofmotion.Wecanprovethatanyfunction39Considerthesolutionf1(ct-x).Attimet1thetransversedisplacementofthestringisgivenbyf1(ct-x).AssuggestedbyFig.B
x1x2Atalatertimet2theshapeofthestringwillbegivenbyf1(ct2-x2)
Considerthesolutionf1(ct-x)40Theparticulartransversedisplacementf1(ct1-x1)ofthestringthatwasfoundatx1whent=t1mustbefoundatapositionx2whent=t2wherect1-x1=ct2-x2Thus,thisparticulardisplacementhasmovedadistancex2-x1=c(t2-t1)totheright.Theparticulartransversedisp41Sincetheparticulardisplacementchosenwasarbitrary,anytransversedisplacementmustmovetotherightwiththesamespeed.Thismeansthattheshapeofthedisturbanceremainsunchangedandtravelsalongthestringtotherightataconstantspeedc.Thefunctionf1(ct-x)representsawavetravelinginthe+xdirection,calledwavefunction.Sincetheparticulardisplacem42STANDINGWAVESConsidernowastringoffinitelengthL.Describingallmotionsofthisstringintermsoftravelingwavesremainspossibleinprinciple.Becauseofrepeatedreflectionsbetweenthetwoends,thatisusuallynotthemosthelpfuld
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款融資居間服務(wù)合同范本
- 加梯安裝合同范例
- 醫(yī)生技術(shù)股協(xié)議合同范本
- 單位燈具購(gòu)買合同范本
- 修車合同范本模板
- 農(nóng)村建房買房合同范本
- 農(nóng)村豬場(chǎng)合同范本
- 人事專員勞務(wù)合同范本
- 勞務(wù)供銷合同范例
- dp付款方式合同范本
- 2022年華中科技大學(xué)博士研究生英語(yǔ)入學(xué)考試真題
- 09式 新擒敵拳 教學(xué)教案 教學(xué)法 圖解
- 《網(wǎng)店運(yùn)營(yíng)與管理》整本書電子教案全套教學(xué)教案
- 打印版 《固體物理教程》課后答案王矜奉
- CAD術(shù)語(yǔ)對(duì)照表
- 學(xué)術(shù)論文的寫作與規(guī)范課件
- 香港牛津新魔法Newmagic3AUnit4Mycalendar單元檢測(cè)試卷
- 中考《紅星照耀中國(guó)》各篇章練習(xí)題及答案(1-12)
- Q∕GDW 11612.43-2018 低壓電力線高速載波通信互聯(lián)互通技術(shù)規(guī)范 第4-3部分:應(yīng)用層通信協(xié)議
- 自動(dòng)化物料編碼規(guī)則
- 第1本書出體旅程journeys out of the body精教版2003版
評(píng)論
0/150
提交評(píng)論