版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BASICAOUSTICAS(6)TransverseMotion-TheVibratingStringBASICAOUSTICAS(6)Transver1VibrationsofextendedsystemsInthepreviouschapteritwasassumedthatthemassmovesasarigidbodysothatitcouldbeconsideredconcentratedatasinglepoint.However,mostvibratingbodiesarenotsosimple.Aloudspeakerhasitsmassdistributedoveritssurfacesothattheconedoesmoveasaunit.Apianosting.Vibrationsofextendedsystems2Aflexiblestringundertensionprovidestheeasiestexampleforvisualizinghowwavesworkanddevelopingphysicalconceptsandtechniquesfortheirstudy.Thevibratingstringisinterestingbothforitsownsake(asasourceofsoundonaguitarorviolin)andasamodelforthemotionofothersystems.Westudyfreemotionofastring.Theproceduresweusewillapplyinourlaterstudyofotherkindsofwaves.Aflexiblestringundertensio3FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)4FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)5Initialdisturbanceatt=0
Separatedisturbanceatt1>>0
Separatedisturbanceatt2>t1PropagationofatransversedisturbancealongastretchedstringInitialdisturbanceatt=0Sep6ItisobservedthatthespeedofpropagationofallsmalldisplacementsisindependentoftheshapeandamplitudeoftheinitialdisplacementanddependsonlyonthemassperunitlengthofthestringanditstensionExperimentandtheoryshowthatthisseedisgivenbyWherecisinm/s,TisthetensioninNandplisthemassperunitlengthofthestringinkg/m.Itisobservedthatthespeed7TheequationofmotionAssumeastringofuniformlineardensityplandnegligiblestiffness,stretchedtoatensionTgreatenoughthattheeffectsofgravitycanbeneglected.Alsoassumethattherearenodissipativeforces(suchasthoseassociatedwithfrictionorwiththeradiationofacousticenergy)TheequationofmotionAssumea8Fig.Aisolatesaninfinitesimalelementofthestringwithequilibriumpositionxandequilibriumlengthdx.Whenthestringisatrest,thetensionsatxandatx+dxarepreciselyequalinmagnitudeandoppositeindirection,makingzerototalforce.
Fig.AFig.Aisolatesaninfinitesi9If
(thetransversedisplacementofthiselementfromitsequilibriumposition)issmall,thetensionTremainsconstantalongthestringandthedifferencebetweentheComponentofthetensionatthetwoendsoftheelementis
If(thetransversedispl10Ifissmall,
WegetApplyingtheTaylor’sseriesexpansionIfissmall,WegetApplyingth11Sincethemassoftheelementispldxanditsaccelerationinthe
directionis
Newton’slawgivesThenyieldstheequationofmotionwheretheconstantc2isdefinedbySincethemassoftheelement12GENERALSOLUTIONOFTHEEQUATIONGOFMOTIONEquation(2-1)isasecond-order,partialdifferentialequation.Itscompletesolutioncontainstwoarbitraryfunctions.Themostgeneralsolutionis
arecompletelyarbitraryfunctionsofarguments(ct-x)and(ct+x),respectively.Possibleexamplesofsucharbitraryfunctionsincludelog(ct+x),(ct+x)2,sin[w(t+x/c)],etal.GENERALSOLUTIONOFTHEEQUATI13Wecanprovethatanyfunctionofargument(ct-x)isasolutionofthewaveequation(2-1).Similarly,itcanbeshownthatf2(ct+x)isalsoasolution.Thesumofthesetwofunctionsisthecompletegeneralsolutionoftheequationofmotion.Wecanprovethatanyfunction14Considerthesolutionf1(ct-x).Attimet1thetransversedisplacementofthestringisgivenbyf1(ct-x).AssuggestedbyFig.B
x1x2Atalatertimet2theshapeofthestringwillbegivenbyf1(ct2-x2)
Considerthesolutionf1(ct-x)15Theparticulartransversedisplacementf1(ct1-x1)ofthestringthatwasfoundatx1whent=t1mustbefoundatapositionx2whent=t2wherect1-x1=ct2-x2Thus,thisparticulardisplacementhasmovedadistancex2-x1=c(t2-t1)totheright.Theparticulartransversedisp16Sincetheparticulardisplacementchosenwasarbitrary,anytransversedisplacementmustmovetotherightwiththesamespeed.Thismeansthattheshapeofthedisturbanceremainsunchangedandtravelsalongthestringtotherightataconstantspeedc.Thefunctionf1(ct-x)representsawavetravelinginthe+xdirection,calledwavefunction.Sincetheparticulardisplacem17STANDINGWAVESConsidernowastringoffinitelengthL.Describingallmotionsofthisstringintermsoftravelingwavesremainspossibleinprinciple.Becauseofrepeatedreflectionsbetweenthetwoends,thatisusuallynotthemosthelpfuldescription.Wefinditmoreconvenienttostudystandingwaves.STANDINGWAVESConsidernowas18FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)19Welimittosolutionsthatmeettheproperboundaryconditions.Supposespecificallythatbothendsofthestringarefixed,thatis:Substitutetheinitialconditions,andobtainWelimittosolutionsthatmee20TheonlywaytomeetthefirstconditionistosetA=0.ThenthesecondconditionallowstheamplitudeBtobeanythingaslongaswerequirethatul/cbeanintegralmultipleof.Theonlywaytomeetthefirst21Weuse
Weuse22Normal-modefrequenciesthatformaharmonicseriesasaboveareaveryspecialfeatureofone-dimensionalsystemswhosepropertiesareuniformeverywherealongtheirlength.Normal-modefrequenciesthatf23Anysumofthesesinusoidalstandingwavesisalsoasolutionofboththeequationofmotionandtheboundaryconditions.SowecanrepresentverygeneralmotionsofastringfixedatbothendsbyAnysumofthesesinusoidalst24HomeworkHowtodeterminetheamplitudesandphasewheninitialconditionshavebeenspecified.(textbookP71-72)HomeworkHowtodeterminethea25
BASICAOUSTICAS(6)TransverseMotion-TheVibratingStringBASICAOUSTICAS(6)Transver26VibrationsofextendedsystemsInthepreviouschapteritwasassumedthatthemassmovesasarigidbodysothatitcouldbeconsideredconcentratedatasinglepoint.However,mostvibratingbodiesarenotsosimple.Aloudspeakerhasitsmassdistributedoveritssurfacesothattheconedoesmoveasaunit.Apianosting.Vibrationsofextendedsystems27Aflexiblestringundertensionprovidestheeasiestexampleforvisualizinghowwavesworkanddevelopingphysicalconceptsandtechniquesfortheirstudy.Thevibratingstringisinterestingbothforitsownsake(asasourceofsoundonaguitarorviolin)andasamodelforthemotionofothersystems.Westudyfreemotionofastring.Theproceduresweusewillapplyinourlaterstudyofotherkindsofwaves.Aflexiblestringundertensio28FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)29FUNDAMENTALSOFACOUSTICS6聲學(xué)基礎(chǔ)(英文版教學(xué)課件)30Initialdisturbanceatt=0
Separatedisturbanceatt1>>0
Separatedisturbanceatt2>t1PropagationofatransversedisturbancealongastretchedstringInitialdisturbanceatt=0Sep31ItisobservedthatthespeedofpropagationofallsmalldisplacementsisindependentoftheshapeandamplitudeoftheinitialdisplacementanddependsonlyonthemassperunitlengthofthestringanditstensionExperimentandtheoryshowthatthisseedisgivenbyWherecisinm/s,TisthetensioninNandplisthemassperunitlengthofthestringinkg/m.Itisobservedthatthespeed32TheequationofmotionAssumeastringofuniformlineardensityplandnegligiblestiffness,stretchedtoatensionTgreatenoughthattheeffectsofgravitycanbeneglected.Alsoassumethattherearenodissipativeforces(suchasthoseassociatedwithfrictionorwiththeradiationofacousticenergy)TheequationofmotionAssumea33Fig.Aisolatesaninfinitesimalelementofthestringwithequilibriumpositionxandequilibriumlengthdx.Whenthestringisatrest,thetensionsatxandatx+dxarepreciselyequalinmagnitudeandoppositeindirection,makingzerototalforce.
Fig.AFig.Aisolatesaninfinitesi34If
(thetransversedisplacementofthiselementfromitsequilibriumposition)issmall,thetensionTremainsconstantalongthestringandthedifferencebetweentheComponentofthetensionatthetwoendsoftheelementis
If(thetransversedispl35Ifissmall,
WegetApplyingtheTaylor’sseriesexpansionIfissmall,WegetApplyingth36Sincethemassoftheelementispldxanditsaccelerationinthe
directionis
Newton’slawgivesThenyieldstheequationofmotionwheretheconstantc2isdefinedbySincethemassoftheelement37GENERALSOLUTIONOFTHEEQUATIONGOFMOTIONEquation(2-1)isasecond-order,partialdifferentialequation.Itscompletesolutioncontainstwoarbitraryfunctions.Themostgeneralsolutionis
arecompletelyarbitraryfunctionsofarguments(ct-x)and(ct+x),respectively.Possibleexamplesofsucharbitraryfunctionsincludelog(ct+x),(ct+x)2,sin[w(t+x/c)],etal.GENERALSOLUTIONOFTHEEQUATI38Wecanprovethatanyfunctionofargument(ct-x)isasolutionofthewaveequation(2-1).Similarly,itcanbeshownthatf2(ct+x)isalsoasolution.Thesumofthesetwofunctionsisthecompletegeneralsolutionoftheequationofmotion.Wecanprovethatanyfunction39Considerthesolutionf1(ct-x).Attimet1thetransversedisplacementofthestringisgivenbyf1(ct-x).AssuggestedbyFig.B
x1x2Atalatertimet2theshapeofthestringwillbegivenbyf1(ct2-x2)
Considerthesolutionf1(ct-x)40Theparticulartransversedisplacementf1(ct1-x1)ofthestringthatwasfoundatx1whent=t1mustbefoundatapositionx2whent=t2wherect1-x1=ct2-x2Thus,thisparticulardisplacementhasmovedadistancex2-x1=c(t2-t1)totheright.Theparticulartransversedisp41Sincetheparticulardisplacementchosenwasarbitrary,anytransversedisplacementmustmovetotherightwiththesamespeed.Thismeansthattheshapeofthedisturbanceremainsunchangedandtravelsalongthestringtotherightataconstantspeedc.Thefunctionf1(ct-x)representsawavetravelinginthe+xdirection,calledwavefunction.Sincetheparticulardisplacem42STANDINGWAVESConsidernowastringoffinitelengthL.Describingallmotionsofthisstringintermsoftravelingwavesremainspossibleinprinciple.Becauseofrepeatedreflectionsbetweenthetwoends,thatisusuallynotthemosthelpfuld
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工地塑剛窗戶合同范例
- 廣告節(jié)日包裝合同范例
- 2024年河南道路旅客運(yùn)輸從業(yè)資格證模擬試題
- 2024年烏魯木齊客運(yùn)從業(yè)資格證書圖片
- 2024年運(yùn)城客運(yùn)從業(yè)資格證考試技巧
- 2024年湖州申請(qǐng)客運(yùn)從業(yè)資格證2024年試題
- 2024年貴陽客運(yùn)從業(yè)資格證實(shí)際操作考試答案解析
- 百分?jǐn)?shù)的認(rèn)識(shí)-公開課教學(xué)設(shè)計(jì)
- 2020年秋冬智慧樹知道網(wǎng)課《耳鼻咽喉頭頸外科學(xué)(南昌大學(xué))》課后章節(jié)測(cè)試滿分答案
- 初級(jí)美容師資格證考試試題及答案
- 揚(yáng)聲器基礎(chǔ)知識(shí)講解課件
- 初中語文人教七年級(jí)上冊(cè)《紀(jì)念白求恩》PPT
- 2023年合肥高新建設(shè)投資集團(tuán)公司招聘筆試題庫(kù)及答案解析
- 項(xiàng)目經(jīng)理崗位競(jìng)聘演講稿課件
- 初中數(shù)學(xué)北師大七年級(jí)下冊(cè)第三章三角形北師大版-探索三角形全等的條件PPT
- 意大利的工業(yè)設(shè)計(jì)史課件
- 第四講大學(xué)生就業(yè)權(quán)益及其法律保障課件
- 污水處理站安全培訓(xùn)課件
- 公司工程碩士、博士聯(lián)合培養(yǎng)管理辦法
- 醫(yī)院優(yōu)質(zhì)服務(wù)考核表
- 東北大學(xué)考試《結(jié)構(gòu)力學(xué)ⅠX》考核作業(yè)參考324
評(píng)論
0/150
提交評(píng)論