2023學(xué)年貴州省盤(pán)縣四中高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第1頁(yè)
2023學(xué)年貴州省盤(pán)縣四中高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第2頁(yè)
2023學(xué)年貴州省盤(pán)縣四中高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第3頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.2.將函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒(méi)有零點(diǎn),則的取值范圍是()A. B.C. D.3.設(shè),,則()A. B.C. D.4.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.5.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或16.函數(shù)()的圖象的大致形狀是()A. B. C. D.7.?dāng)?shù)列滿足:,則數(shù)列前項(xiàng)的和為A. B. C. D.8.上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國(guó)古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國(guó)古代音律與歷法的密切聯(lián)系.圖2為骨笛測(cè)量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測(cè)量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽(yáng)光線)與春秋分日光(當(dāng)日正午太陽(yáng)光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬(wàn)年持續(xù)減小,其正切值及對(duì)應(yīng)的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過(guò)計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年9.正方形的邊長(zhǎng)為,是正方形內(nèi)部(不包括正方形的邊)一點(diǎn),且,則的最小值為()A. B. C. D.10.設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令.有以下6個(gè)論斷:①是奇函數(shù)時(shí),是奇函數(shù);②是偶函數(shù)時(shí),是奇函數(shù);③是偶函數(shù)時(shí),是偶函數(shù);④是奇函數(shù)時(shí),是偶函數(shù)⑤是偶函數(shù);⑥對(duì)任意的實(shí)數(shù),.那么正確論斷的編號(hào)是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤11.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.1912.集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)在直線上,則的值等于______________.14.設(shè)實(shí)數(shù)滿足約束條件,則的最大值為_(kāi)_____.15.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問(wèn)卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_(kāi)______.16.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)若數(shù)列滿足:對(duì)于任意,均為數(shù)列中的項(xiàng),則稱(chēng)數(shù)列為“數(shù)列”.(1)若數(shù)列的前項(xiàng)和,,試判斷數(shù)列是否為“數(shù)列”?說(shuō)明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.18.(12分)已知等比數(shù)列中,,是和的等差中項(xiàng).(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.19.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.20.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長(zhǎng)度.21.(12分)在中,角所對(duì)的邊分別為,,的面積.(1)求角C;(2)求周長(zhǎng)的取值范圍.22.(10分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【答案解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個(gè)選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【題目詳解】?jī)蓷l漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【答案點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.2.A【答案解析】

根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【題目詳解】函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,可得的圖象,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒(méi)有零點(diǎn),∴,∴,,解得,又,解得,當(dāng)k=0時(shí),解,當(dāng)k=-1時(shí),,可得,.故答案為:A.【答案點(diǎn)睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點(diǎn)問(wèn)題,此類(lèi)問(wèn)題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.3.D【答案解析】

由不等式的性質(zhì)及換底公式即可得解.【題目詳解】解:因?yàn)?,,則,且,所以,,又,即,則,即,故選:D.【答案點(diǎn)睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.4.A【答案解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【題目詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【答案點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5.D【答案解析】

求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【題目詳解】直線的斜率為,對(duì)于,令,解得,故切點(diǎn)為,代入直線方程得,解得或1.故選:D【答案點(diǎn)睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.6.C【答案解析】

對(duì)x分類(lèi)討論,去掉絕對(duì)值,即可作出圖象.【題目詳解】故選C.【答案點(diǎn)睛】識(shí)圖常用的方法(1)定性分析法:通過(guò)對(duì)問(wèn)題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問(wèn)題;(2)定量計(jì)算法:通過(guò)定量的計(jì)算來(lái)分析解決問(wèn)題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來(lái)分析解決問(wèn)題.7.A【答案解析】分析:通過(guò)對(duì)an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.8.D【答案解析】

先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識(shí)計(jì)算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項(xiàng).【題目詳解】解:由題意,可設(shè)冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫(huà)出如下平面幾何圖形:則,,.,估計(jì)該骨笛的大致年代早于公元前6000年.故選:.【答案點(diǎn)睛】本題考查利用三角函數(shù)解決實(shí)際問(wèn)題的能力,運(yùn)用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學(xué)建模思想,以及數(shù)學(xué)運(yùn)算能力,屬中檔題.9.C【答案解析】

分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡(jiǎn)求解.【題目詳解】解:建立以為原點(diǎn),以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時(shí),的最小值為.故選:C.【答案點(diǎn)睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.10.A【答案解析】

根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【題目詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí),則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,,此時(shí),故⑥錯(cuò)誤;故③④正確.故選:A【答案點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.11.B【答案解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【題目詳解】解:an即a1=an?6時(shí),a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時(shí),要使得a1則ak+1則k=17,故選:B.【答案點(diǎn)睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡(jiǎn)化與數(shù)列相關(guān)的方程,本題屬于難題.12.A【答案解析】

計(jì)算,再計(jì)算交集得到答案.【題目詳解】,,故.故選:.【答案點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

根據(jù)題意可得,再由,即可得到結(jié)論.【題目詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【答案點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14.【答案解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當(dāng)直線過(guò)點(diǎn)時(shí),最大,且考點(diǎn):線性規(guī)劃.15.【答案解析】由分層抽樣的知識(shí)可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.16.【答案解析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【題目詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【答案點(diǎn)睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)不是,見(jiàn)解析(2)(3)【答案解析】

(1)利用遞推關(guān)系求出數(shù)列的通項(xiàng)公式,進(jìn)一步驗(yàn)證時(shí),是否為數(shù)列中的項(xiàng),即可得答案;(2)由題意得,再對(duì)公差進(jìn)行分類(lèi)討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【題目詳解】(1)當(dāng)時(shí),又,所以.所以當(dāng)時(shí),,而,所以時(shí),不是數(shù)列中的項(xiàng),故數(shù)列不是為“數(shù)列”(2)因?yàn)閿?shù)列是公差為的等差數(shù)列,所以.因?yàn)閿?shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項(xiàng).②若,則.此時(shí),當(dāng)時(shí),不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因?yàn)椋覕?shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當(dāng)時(shí),,與①式對(duì)應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗(yàn)當(dāng)時(shí),①②兩式對(duì)應(yīng)任意恒成立,所以數(shù)列的通項(xiàng)公式為.【答案點(diǎn)睛】本題考查數(shù)列新定義題、等差數(shù)列的通項(xiàng)公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類(lèi)討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度較大.18.(1)(2)【答案解析】

(1)用等比數(shù)列的首項(xiàng)和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項(xiàng)公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯(cuò)位相減法求出Tn.【題目詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【答案點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和等差中項(xiàng)的概念以及錯(cuò)位相減法求和,考查運(yùn)算能力,屬中檔題.19.(1)證明見(jiàn)解析(2)45°【答案解析】

(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過(guò)B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【題目詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【答案點(diǎn)睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進(jìn)行求解.20.(1).(2).【答案解析】

(1)以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計(jì)算夾角得到答案.(2)設(shè),0≤λ≤1,計(jì)算P(0,2λ,2﹣2λ),計(jì)算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計(jì)算得到答案.【題目詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,∵AD=2,AB=AF=2EF=2,P是DF的中點(diǎn),∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論